000811874 001__ 811874
000811874 005__ 20220930130103.0
000811874 0247_ $$2doi$$a10.1016/j.jhydrol.2016.08.007
000811874 0247_ $$2ISSN$$a0022-1694
000811874 0247_ $$2ISSN$$a1879-2707
000811874 0247_ $$2Handle$$a2128/12560
000811874 0247_ $$2WOS$$aWOS:000386410400024
000811874 037__ $$aFZJ-2016-04216
000811874 041__ $$aEnglish
000811874 082__ $$a690
000811874 1001_ $$0P:(DE-Juel1)144847$$aStockinger, Michael P.$$b0$$eCorresponding author
000811874 245__ $$aTracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution
000811874 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000811874 3367_ $$2DRIVER$$aarticle
000811874 3367_ $$2DataCite$$aOutput Types/Journal article
000811874 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1478073791_9984
000811874 3367_ $$2BibTeX$$aARTICLE
000811874 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811874 3367_ $$00$$2EndNote$$aJournal Article
000811874 520__ $$aThe streamwater transit time distribution (TTD) of a catchment is used to derive insights into the movement of precipitation water via various flow paths to the catchment’s stream. Typically, TTDs are estimated by using the convolution integral to model a weekly tracer signal measured in streamflow. Another approach for evaluating the transit time of water to the catchment stream is the fraction of young water (Fyw) in streamflow that is younger than a certain threshold age, which also relies on tracer data. However, few studies used tracer data with a higher sampling frequency than weekly. To investigate the influence of the sampling frequency of tracer data on estimates of TTD and Fyw, we estimated both indicators for a humid, mesoscale catchment in Germany using tracer data of weekly and higher sampling frequency. We made use of a 1.5 year long time series of daily to sub-daily precipitation and streamwater isotope measurements, which were aggregated to create the weekly resolution data set. We found that a higher sampling frequency improved the stream isotope simulation compared to a weekly one (0.35 vs. 0.24 Nash-Sutcliffe Efficiency) and showed more pronounced short-term dynamics in the simulation result. The TTD based on the high temporal resolution data was considerably different from the weekly one with a shift towards faster transit times, while its corresponding mean transit time of water particles was approximately reduced by half (from 9.5 to 5 years). Similar to this, Fyw almost doubled when applying high resolution data compared to weekly one. Thus, the different approaches yield similar results and strongly support each other. This indicates that weekly isotope tracer data lack information about faster water transport mechanisms in the catchment. Thus, we conclude that a higher than weekly sampling frequency should be preferred when investigating a catchment’s water transport characteristics. When comparing TTDs or Fyw of different catchments, the temporal resolution of the used datasets needs to be considered.
000811874 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000811874 588__ $$aDataset connected to CrossRef
000811874 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b1
000811874 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b2
000811874 7001_ $$0P:(DE-HGF)0$$aDiekkrüger, Bernd$$b3
000811874 7001_ $$0P:(DE-HGF)0$$aCornelissen, Thomas$$b4
000811874 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000811874 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2016.08.007$$gp. S0022169416304863$$nPart B$$p952–964$$tJournal of hydrology$$v541$$x0022-1694$$y2016
000811874 8564_ $$uhttps://juser.fz-juelich.de/record/811874/files/Stockinger%20et%20al%202016%20-%20Tracer%20Sampling%20Frequency.pdf$$yPublished on 2017-01-01. Available in OpenAccess from 2018-01-01.
000811874 8564_ $$uhttps://juser.fz-juelich.de/record/811874/files/Stockinger%20et%20al%202016%20-%20Tracer%20Sampling%20Frequency.gif?subformat=icon$$xicon$$yPublished on 2017-01-01. Available in OpenAccess from 2018-01-01.
000811874 8564_ $$uhttps://juser.fz-juelich.de/record/811874/files/Stockinger%20et%20al%202016%20-%20Tracer%20Sampling%20Frequency.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-01-01. Available in OpenAccess from 2018-01-01.
000811874 8564_ $$uhttps://juser.fz-juelich.de/record/811874/files/Stockinger%20et%20al%202016%20-%20Tracer%20Sampling%20Frequency.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-01-01. Available in OpenAccess from 2018-01-01.
000811874 8564_ $$uhttps://juser.fz-juelich.de/record/811874/files/Stockinger%20et%20al%202016%20-%20Tracer%20Sampling%20Frequency.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-01-01. Available in OpenAccess from 2018-01-01.
000811874 8767_ $$8W1346912$$92016-10-10$$d2016-10-10$$eColour charges$$jZahlung erfolgt
000811874 909CO $$ooai:juser.fz-juelich.de:811874$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000811874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144847$$aForschungszentrum Jülich$$b0$$kFZJ
000811874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000811874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich$$b2$$kFZJ
000811874 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000811874 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000811874 9141_ $$y2016
000811874 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811874 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000811874 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000811874 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000811874 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2014
000811874 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811874 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811874 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811874 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811874 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000811874 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000811874 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811874 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811874 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811874 920__ $$lyes
000811874 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000811874 980__ $$ajournal
000811874 980__ $$aVDB
000811874 980__ $$aUNRESTRICTED
000811874 980__ $$aI:(DE-Juel1)IBG-3-20101118
000811874 9801_ $$aFullTexts
000811874 980__ $$aAPC