000811918 001__ 811918
000811918 005__ 20240712100848.0
000811918 0247_ $$2doi$$a10.5194/amt-9-3619-2016
000811918 0247_ $$2ISSN$$a1867-1381
000811918 0247_ $$2ISSN$$a1867-8548
000811918 0247_ $$2Handle$$a2128/12149
000811918 0247_ $$2WOS$$aWOS:000383146000001
000811918 0247_ $$2altmetric$$aaltmetric:12528367
000811918 037__ $$aFZJ-2016-04232
000811918 082__ $$a550
000811918 1001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b0$$eCorresponding author
000811918 245__ $$aA multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra
000811918 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2016
000811918 3367_ $$2DRIVER$$aarticle
000811918 3367_ $$2DataCite$$aOutput Types/Journal article
000811918 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481293758_4376
000811918 3367_ $$2BibTeX$$aARTICLE
000811918 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811918 3367_ $$00$$2EndNote$$aJournal Article
000811918 520__ $$aThe Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on board the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of daytime and night-time observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to space-borne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions.Here we present a new infrared PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2-D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS).The classification results are compared to coincident measurements from the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument over the temporal overlap of both satellite missions (June 2006–March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries and the vertical and horizontal resolution are quite different. Discrepancies are observed between the CALIOP and the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the Southern Hemisphere polar vortex than CALIOP. This disagreement is attributed in part to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence compared to the real fraction of ice within the PSC area in the polar vortex.The entire MIPAS measurement period was processed with the new classification approach. Examples like the detection of the Antarctic NAT belt during early winter, and its possible link to mountain wave events over the Antarctic Peninsula, which are observed by the Atmospheric Infrared Sounder (AIRS) instrument, highlight the importance of a climatology of 9 Southern Hemisphere and 10 Northern Hemisphere winters in total. The new dataset is valuable both for detailed process studies, and for comparisons with and improvements of the PSC parameterizations used in chemistry transport and climate models.
000811918 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000811918 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000811918 588__ $$aDataset connected to CrossRef
000811918 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b1
000811918 7001_ $$0P:(DE-HGF)0$$aHöpfner, Michael$$b2
000811918 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b3
000811918 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b4
000811918 7001_ $$0P:(DE-HGF)0$$aPitts, Michael C.$$b5
000811918 7001_ $$0P:(DE-HGF)0$$aOrr, Andrew M. W.$$b6
000811918 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000811918 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-9-3619-2016$$gVol. 9, no. 8, p. 3619 - 3639$$n8$$p3619 - 3639$$tAtmospheric measurement techniques$$v9$$x1867-8548$$y2016
000811918 8564_ $$uhttps://juser.fz-juelich.de/record/811918/files/amt-9-3619-2016.pdf$$yOpenAccess
000811918 8564_ $$uhttps://juser.fz-juelich.de/record/811918/files/amt-9-3619-2016.gif?subformat=icon$$xicon$$yOpenAccess
000811918 8564_ $$uhttps://juser.fz-juelich.de/record/811918/files/amt-9-3619-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811918 8564_ $$uhttps://juser.fz-juelich.de/record/811918/files/amt-9-3619-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811918 8564_ $$uhttps://juser.fz-juelich.de/record/811918/files/amt-9-3619-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811918 8564_ $$uhttps://juser.fz-juelich.de/record/811918/files/amt-9-3619-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811918 8767_ $$92016-10-19$$d2016-10-19$$eAPC$$jZahlung erfolgt$$pamt-2016-20
000811918 909CO $$ooai:juser.fz-juelich.de:811918$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000811918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b0$$kFZJ
000811918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b1$$kFZJ
000811918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b3$$kFZJ
000811918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b4$$kFZJ
000811918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000811918 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000811918 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000811918 9141_ $$y2016
000811918 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000811918 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811918 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2014
000811918 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000811918 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811918 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811918 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811918 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811918 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811918 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811918 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811918 920__ $$lyes
000811918 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811918 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000811918 9801_ $$aFullTexts
000811918 980__ $$ajournal
000811918 980__ $$aVDB
000811918 980__ $$aI:(DE-Juel1)JSC-20090406
000811918 980__ $$aI:(DE-Juel1)IEK-7-20101013
000811918 980__ $$aUNRESTRICTED
000811918 980__ $$aAPC
000811918 981__ $$aI:(DE-Juel1)ICE-4-20101013
000811918 981__ $$aI:(DE-Juel1)IEK-7-20101013