000811940 001__ 811940
000811940 005__ 20210129223948.0
000811940 0247_ $$2doi$$a10.1039/C6SM00412A
000811940 0247_ $$2ISSN$$a1744-683X
000811940 0247_ $$2ISSN$$a1744-6848
000811940 0247_ $$2WOS$$aWOS:000379676800009
000811940 0247_ $$2altmetric$$aaltmetric:6817212
000811940 0247_ $$2pmid$$apmid:27142463
000811940 037__ $$aFZJ-2016-04250
000811940 082__ $$a530
000811940 1001_ $$0P:(DE-Juel1)128835$$aMonzel, Cornelia$$b0
000811940 245__ $$aNanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution
000811940 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2016
000811940 3367_ $$2DRIVER$$aarticle
000811940 3367_ $$2DataCite$$aOutput Types/Journal article
000811940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470811269_8489
000811940 3367_ $$2BibTeX$$aARTICLE
000811940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811940 3367_ $$00$$2EndNote$$aJournal Article
000811940 520__ $$aWe probe the bending fluctuations of bio-membranes using highly deflated giant unilamellar vesicles (GUVs) bound to a substrate by a weak potential arising from generic interactions. The substrate is either homogeneous, with GUVs bound only by the weak potential, or is chemically functionalized with a micro-pattern of very strong specific binders. In both cases, the weakly adhered membrane is seen to be confined at a well-defined distance above the surface while it continues to fluctuate strongly. We quantify the fluctuations of the weakly confined membrane at the substrate proximal surface as well as of the free membrane at the distal surface of the same GUV. This strategy enables us to probe in detail the damping of fluctuations in the presence of the substrate, and to independently measure the membrane tension and the strength of the generic interaction potential. Measurements were done using two complementary techniques – dynamic optical displacement spectroscopy (DODS, resolution: 20 nm, 10 μs), and dual wavelength reflection interference contrast microscopy (DW-RICM, resolution: 4 nm, 50 ms). After accounting for the spatio-temporal resolution of the techniques, an excellent agreement between the two measurements was obtained. For both weakly confined systems we explore in detail the link between fluctuations on the one hand and membrane tension and the interaction potential on the other hand.
000811940 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000811940 588__ $$aDataset connected to CrossRef
000811940 7001_ $$0P:(DE-HGF)0$$aSchmidt, Daniel$$b1
000811940 7001_ $$0P:(DE-HGF)0$$aSeifert, Udo$$b2
000811940 7001_ $$0P:(DE-HGF)0$$aSmith, Ana-Sunčana$$b3
000811940 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b4$$ufzj
000811940 7001_ $$0P:(DE-HGF)0$$aSengupta, Kheya$$b5$$eCorresponding author
000811940 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C6SM00412A$$gVol. 12, no. 21, p. 4755 - 4768$$n21$$p4755 - 4768$$tSoft matter$$v12$$x1744-6848$$y2016
000811940 8564_ $$uhttps://juser.fz-juelich.de/record/811940/files/c6sm00412a.pdf$$yRestricted
000811940 8564_ $$uhttps://juser.fz-juelich.de/record/811940/files/c6sm00412a.gif?subformat=icon$$xicon$$yRestricted
000811940 8564_ $$uhttps://juser.fz-juelich.de/record/811940/files/c6sm00412a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000811940 8564_ $$uhttps://juser.fz-juelich.de/record/811940/files/c6sm00412a.jpg?subformat=icon-180$$xicon-180$$yRestricted
000811940 8564_ $$uhttps://juser.fz-juelich.de/record/811940/files/c6sm00412a.jpg?subformat=icon-640$$xicon-640$$yRestricted
000811940 8564_ $$uhttps://juser.fz-juelich.de/record/811940/files/c6sm00412a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000811940 909CO $$ooai:juser.fz-juelich.de:811940$$pVDB
000811940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b4$$kFZJ
000811940 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000811940 9141_ $$y2016
000811940 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811940 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2014
000811940 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811940 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811940 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811940 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811940 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000811940 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811940 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811940 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811940 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811940 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811940 920__ $$lyes
000811940 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000811940 980__ $$ajournal
000811940 980__ $$aVDB
000811940 980__ $$aUNRESTRICTED
000811940 980__ $$aI:(DE-Juel1)ICS-7-20110106
000811940 981__ $$aI:(DE-Juel1)IBI-2-20200312