000811979 001__ 811979 000811979 005__ 20221109161713.0 000811979 0247_ $$2doi$$a10.1002/nla.2048 000811979 0247_ $$2WOS$$aWOS:000383673200006 000811979 037__ $$aFZJ-2016-04280 000811979 041__ $$aEnglish 000811979 082__ $$a510 000811979 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding author$$ufzj 000811979 245__ $$aEfficient estimation of eigenvalue counts in an interval 000811979 260__ $$aNew York, NY [u.a.]$$bWiley$$c2016 000811979 3367_ $$2DRIVER$$aarticle 000811979 3367_ $$2DataCite$$aOutput Types/Journal article 000811979 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470914832_13979 000811979 3367_ $$2BibTeX$$aARTICLE 000811979 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000811979 3367_ $$00$$2EndNote$$aJournal Article 000811979 520__ $$aEstimating the number of eigenvalues located in a given interval of a large sparse Hermitian matrix is an important problem in certain applications, and it is a prerequisite of eigensolvers based on a divide-and-conquer paradigm. Often, an exact count is not necessary, and methods based on stochastic estimates can be utilized to yield rough approximations. This paper examines a number of techniques tailored to this specific task. It reviews standard approaches and explores new ones based on polynomial and rational approximation filtering combined with a stochastic procedure. We also discuss how the latter method is particularly well- suited for the FEAST eigensolver. 000811979 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000811979 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2 000811979 7001_ $$0P:(DE-HGF)0$$aPolizzi, Eric$$b1 000811979 7001_ $$0P:(DE-HGF)0$$aSaad, Yousef$$b2 000811979 773__ $$0PERI:(DE-600)2012602-5$$a10.1002/nla.2048$$n4$$p674-692$$tNumerical linear algebra with applications$$v23$$x1070-5325$$y2016 000811979 909CO $$ooai:juser.fz-juelich.de:811979$$pVDB 000811979 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000811979 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUMER LINEAR ALGEBR : 2014 000811979 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000811979 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000811979 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000811979 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000811979 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000811979 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000811979 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000811979 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000811979 9141_ $$y2016 000811979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b0$$kFZJ 000811979 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern 000811979 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000811979 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000811979 980__ $$ajournal 000811979 980__ $$aVDB 000811979 980__ $$aUNRESTRICTED 000811979 980__ $$aI:(DE-Juel1)JSC-20090406