001     811979
005     20221109161713.0
024 7 _ |2 doi
|a 10.1002/nla.2048
024 7 _ |2 WOS
|a WOS:000383673200006
037 _ _ |a FZJ-2016-04280
041 _ _ |a English
082 _ _ |a 510
100 1 _ |0 P:(DE-Juel1)144723
|a Di Napoli, Edoardo
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Efficient estimation of eigenvalue counts in an interval
260 _ _ |a New York, NY [u.a.]
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1470914832_13979
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Estimating the number of eigenvalues located in a given interval of a large sparse Hermitian matrix is an important problem in certain applications, and it is a prerequisite of eigensolvers based on a divide-and-conquer paradigm. Often, an exact count is not necessary, and methods based on stochastic estimates can be utilized to yield rough approximations. This paper examines a number of techniques tailored to this specific task. It reviews standard approaches and explores new ones based on polynomial and rational approximation filtering combined with a stochastic procedure. We also discuss how the latter method is particularly well- suited for the FEAST eigensolver.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
700 1 _ |0 P:(DE-HGF)0
|a Polizzi, Eric
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Saad, Yousef
|b 2
773 _ _ |0 PERI:(DE-600)2012602-5
|a 10.1002/nla.2048
|n 4
|p 674-692
|t Numerical linear algebra with applications
|v 23
|x 1070-5325
|y 2016
909 C O |o oai:juser.fz-juelich.de:811979
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144723
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a External Institute
|b 1
|k Extern
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 0
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NUMER LINEAR ALGEBR : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21