001 | 811979 | ||
005 | 20221109161713.0 | ||
024 | 7 | _ | |2 doi |a 10.1002/nla.2048 |
024 | 7 | _ | |2 WOS |a WOS:000383673200006 |
037 | _ | _ | |a FZJ-2016-04280 |
041 | _ | _ | |a English |
082 | _ | _ | |a 510 |
100 | 1 | _ | |0 P:(DE-Juel1)144723 |a Di Napoli, Edoardo |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Efficient estimation of eigenvalue counts in an interval |
260 | _ | _ | |a New York, NY [u.a.] |b Wiley |c 2016 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1470914832_13979 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Estimating the number of eigenvalues located in a given interval of a large sparse Hermitian matrix is an important problem in certain applications, and it is a prerequisite of eigensolvers based on a divide-and-conquer paradigm. Often, an exact count is not necessary, and methods based on stochastic estimates can be utilized to yield rough approximations. This paper examines a number of techniques tailored to this specific task. It reviews standard approaches and explores new ones based on polynomial and rational approximation filtering combined with a stochastic procedure. We also discuss how the latter method is particularly well- suited for the FEAST eigensolver. |
536 | _ | _ | |0 G:(DE-HGF)POF3-511 |a 511 - Computational Science and Mathematical Methods (POF3-511) |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Polizzi, Eric |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Saad, Yousef |b 2 |
773 | _ | _ | |0 PERI:(DE-600)2012602-5 |a 10.1002/nla.2048 |n 4 |p 674-692 |t Numerical linear algebra with applications |v 23 |x 1070-5325 |y 2016 |
909 | C | O | |o oai:juser.fz-juelich.de:811979 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144723 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a External Institute |b 1 |k Extern |
913 | 1 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |v Computational Science and Mathematical Methods |x 0 |l Supercomputing & Big Data |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NUMER LINEAR ALGEBR : 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0550 |2 StatID |a No Authors Fulltext |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|