000811991 001__ 811991
000811991 005__ 20210129224000.0
000811991 037__ $$aFZJ-2016-04292
000811991 041__ $$aEnglish
000811991 1001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b0$$eCorresponding author$$ufzj
000811991 1112_ $$a9th International Symposium on Metallic Multilayersh$$cUppsala$$d2016-06-19 - 2016-06-23$$gMML2016$$wSweden
000811991 245__ $$aImpact of the interface quality on the spin Hall magnetoresistance in Pt/YIG hybrids
000811991 260__ $$c2016
000811991 3367_ $$033$$2EndNote$$aConference Paper
000811991 3367_ $$2BibTeX$$aINPROCEEDINGS
000811991 3367_ $$2DRIVER$$aconferenceObject
000811991 3367_ $$2ORCID$$aCONFERENCE_POSTER
000811991 3367_ $$2DataCite$$aOutput Types/Conference Poster
000811991 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1472717794_15959$$xAfter Call
000811991 520__ $$aFor the generation and detection of pure spin currents via the (inverse) spin Hall effect, a combination of a non-ferromagnetic metal and an insulating magnet is required. In this context platinum (Pt) thin films grown on yttrium iron garnet (Y3Fe5O12, YIG) serve as prototype structures [1-3]. Recently, the influence of the Pt/YIG interface quality on the spin Hall effect came into focus and the importance of improving the surface quality of YIG was discussed [4-6].We present a systematic study of Pt thin film growth on YIG single crystals correlating the interface quality of the Pt/YIG bilayers to spin Hall magnetoresistance (SMR) measurements. Prior to the Pt deposition, which was carried out by thermal evaporation under UHV conditions, YIG crystals were exposed to different surface treatments. The sample quality was controlled in-situ by Auger-electron- spectroscopy, reflection high/low energy electron diffraction as well as ex-situ by X- ray reflectivity and atomic force microscopy.Best Pt thin films were achieved using YIG crystals treated with Piranha solution followed by annealing in oxygen prior to the thin film growth. In these samples a SMR value of about 4·10-4 was achieved, which is close to the SMR effect of respective Pt/YIG samples with in-situ interfaces [3]. Growing Pt thin films at higher temperature increases the thin film roughness as well as the interdiffusion of Pt and YIG. However, by utilizing X-ray magnetic circular dichroism, no induced magnetic moment could be detected neither in Pt thin films on YIG substrates fabricated at room temperature nor at 500°C. This result is in agreement with earlier measurements on Pt/YIG thin films [7].References[1] H. Nakayama et al., Phys. Rev. Lett. 110, 206601 (2013)[2] Y. Sun et al., Phys. Rev. Lett. 111, 106601 (2013)[3] M. Althammer et al., Phys. Rev. B 87, 224401 (2013)[4] M. B. Jungfleisch et al., Appl. Phys. Lett. 103, 022411 (2013)[5] Z. Qiu, et al., Appl. Phys. Lett. 103, 09404 (2013)[6] A. Aqeel et al., J. Appl. Phys. 116, 15703 (2014).[7] S. Geprägs, et al., Appl. Phys. Lett. 101, 262407 (2012).
000811991 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000811991 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000811991 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000811991 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000811991 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000811991 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x2
000811991 65017 $$0V:(DE-MLZ)GC-120-1$$2V:(DE-HGF)$$aInformation and Communication$$x0
000811991 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x1
000811991 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000811991 7001_ $$0P:(DE-HGF)0$$aGeprägs, Stephan$$b1
000811991 7001_ $$0P:(DE-HGF)0$$aSchlitz, Richard$$b2
000811991 7001_ $$0P:(DE-HGF)0$$aGanzhorn, Katrin$$b3
000811991 7001_ $$0P:(DE-HGF)0$$aOpel, Matthias$$b4
000811991 7001_ $$0P:(DE-HGF)0$$aErb, Andreas$$b5
000811991 7001_ $$0P:(DE-HGF)0$$aGoennenwein, Sebastian T. B.$$b6
000811991 7001_ $$0P:(DE-HGF)0$$aWilhelm, F.$$b7
000811991 7001_ $$0P:(DE-HGF)0$$aRogalev, A.$$b8
000811991 7001_ $$0P:(DE-HGF)0$$aGross, Rudolf$$b9
000811991 909CO $$ooai:juser.fz-juelich.de:811991$$pVDB$$pVDB:MLZ
000811991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b0$$kFZJ
000811991 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000811991 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000811991 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000811991 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000811991 9141_ $$y2016
000811991 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811991 920__ $$lyes
000811991 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000811991 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000811991 980__ $$aposter
000811991 980__ $$aVDB
000811991 980__ $$aUNRESTRICTED
000811991 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000811991 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000811991 981__ $$aI:(DE-Juel1)JCNS-2-20110106