001     811991
005     20210129224000.0
037 _ _ |a FZJ-2016-04292
041 _ _ |a English
100 1 _ |a Pütter, Sabine
|0 P:(DE-Juel1)142052
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 9th International Symposium on Metallic Multilayersh
|g MML2016
|c Uppsala
|d 2016-06-19 - 2016-06-23
|w Sweden
245 _ _ |a Impact of the interface quality on the spin Hall magnetoresistance in Pt/YIG hybrids
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1472717794_15959
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a For the generation and detection of pure spin currents via the (inverse) spin Hall effect, a combination of a non-ferromagnetic metal and an insulating magnet is required. In this context platinum (Pt) thin films grown on yttrium iron garnet (Y3Fe5O12, YIG) serve as prototype structures [1-3]. Recently, the influence of the Pt/YIG interface quality on the spin Hall effect came into focus and the importance of improving the surface quality of YIG was discussed [4-6].We present a systematic study of Pt thin film growth on YIG single crystals correlating the interface quality of the Pt/YIG bilayers to spin Hall magnetoresistance (SMR) measurements. Prior to the Pt deposition, which was carried out by thermal evaporation under UHV conditions, YIG crystals were exposed to different surface treatments. The sample quality was controlled in-situ by Auger-electron- spectroscopy, reflection high/low energy electron diffraction as well as ex-situ by X- ray reflectivity and atomic force microscopy.Best Pt thin films were achieved using YIG crystals treated with Piranha solution followed by annealing in oxygen prior to the thin film growth. In these samples a SMR value of about 4·10-4 was achieved, which is close to the SMR effect of respective Pt/YIG samples with in-situ interfaces [3]. Growing Pt thin films at higher temperature increases the thin film roughness as well as the interdiffusion of Pt and YIG. However, by utilizing X-ray magnetic circular dichroism, no induced magnetic moment could be detected neither in Pt thin films on YIG substrates fabricated at room temperature nor at 500°C. This result is in agreement with earlier measurements on Pt/YIG thin films [7].References[1] H. Nakayama et al., Phys. Rev. Lett. 110, 206601 (2013)[2] Y. Sun et al., Phys. Rev. Lett. 111, 106601 (2013)[3] M. Althammer et al., Phys. Rev. B 87, 224401 (2013)[4] M. B. Jungfleisch et al., Appl. Phys. Lett. 103, 022411 (2013)[5] Z. Qiu, et al., Appl. Phys. Lett. 103, 09404 (2013)[6] A. Aqeel et al., J. Appl. Phys. 116, 15703 (2014).[7] S. Geprägs, et al., Appl. Phys. Lett. 101, 262407 (2012).
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 2
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 3
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 2
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-1
|2 V:(DE-HGF)
|x 0
650 1 7 |a Key Technologies
|0 V:(DE-MLZ)GC-150-1
|2 V:(DE-HGF)
|x 1
693 _ _ |0 EXP:(DE-MLZ)MBE-MLZ-20151210
|5 EXP:(DE-MLZ)MBE-MLZ-20151210
|e MBE-MLZ: Molecular Beam Epitaxy at MLZ
|x 0
700 1 _ |a Geprägs, Stephan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schlitz, Richard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ganzhorn, Katrin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Opel, Matthias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Erb, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Goennenwein, Sebastian T. B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wilhelm, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rogalev, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gross, Rudolf
|0 P:(DE-HGF)0
|b 9
909 C O |o oai:juser.fz-juelich.de:811991
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142052
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 2
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21