000812018 001__ 812018
000812018 005__ 20221109161713.0
000812018 0247_ $$2arXiv$$aarXiv:1604.06296
000812018 0247_ $$2doi$$a10.1016/j.cpc.2016.12.013
000812018 0247_ $$2Handle$$a2128/13743
000812018 0247_ $$2WOS$$aWOS:000393630800011
000812018 0247_ $$2altmetric$$aaltmetric:6868704
000812018 037__ $$aFZJ-2016-04315
000812018 082__ $$a004
000812018 1001_ $$0P:(DE-HGF)0$$aLichtenstein, J.$$b0$$eCorresponding author
000812018 245__ $$aHigh-performance functional Renormalization Group calculations for interacting fermions
000812018 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2017
000812018 3367_ $$2DRIVER$$aarticle
000812018 3367_ $$2DataCite$$aOutput Types/Journal article
000812018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1665082225_11828
000812018 3367_ $$2BibTeX$$aARTICLE
000812018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000812018 3367_ $$00$$2EndNote$$aJournal Article
000812018 520__ $$aWe derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the $t$,$t'$ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.
000812018 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000812018 536__ $$0G:(DE-Juel1)jhpc26_20151101$$aHigh-performance functional renormalization group for two-dimensional materials (jhpc26_20151101)$$cjhpc26_20151101$$fHigh-performance functional renormalization group for two-dimensional materials$$x1
000812018 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000812018 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000812018 588__ $$aDataset connected to arXivarXiv
000812018 7001_ $$0P:(DE-HGF)0$$ade la Peña, D. Sánchez$$b1
000812018 7001_ $$0P:(DE-Juel1)133032$$aRohe, D.$$b2$$ufzj
000812018 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, E.$$b3$$ufzj
000812018 7001_ $$0P:(DE-HGF)0$$aHonerkamp, C.$$b4
000812018 7001_ $$0P:(DE-HGF)0$$aMaier, S. A.$$b5
000812018 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2016.12.013$$p100-110$$tComputer physics communications$$v213$$x0010-4655$$y2017
000812018 8564_ $$uhttps://juser.fz-juelich.de/record/812018/files/1604.06296v2.pdf$$yOpenAccess
000812018 8564_ $$uhttps://juser.fz-juelich.de/record/812018/files/1604.06296v2.gif?subformat=icon$$xicon$$yOpenAccess
000812018 8564_ $$uhttps://juser.fz-juelich.de/record/812018/files/1604.06296v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000812018 8564_ $$uhttps://juser.fz-juelich.de/record/812018/files/1604.06296v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000812018 8564_ $$uhttps://juser.fz-juelich.de/record/812018/files/1604.06296v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000812018 8564_ $$uhttps://juser.fz-juelich.de/record/812018/files/1604.06296v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000812018 909CO $$ooai:juser.fz-juelich.de:812018$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000812018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133032$$aForschungszentrum Jülich$$b2$$kFZJ
000812018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b3$$kFZJ
000812018 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000812018 9141_ $$y2017
000812018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000812018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2014
000812018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000812018 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000812018 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000812018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000812018 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000812018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000812018 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000812018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000812018 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000812018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000812018 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000812018 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000812018 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000812018 980__ $$ajournal
000812018 980__ $$aVDB
000812018 980__ $$aI:(DE-Juel1)JSC-20090406
000812018 980__ $$aI:(DE-82)080009_20140620
000812018 980__ $$aI:(DE-82)080012_20140620
000812018 980__ $$aUNRESTRICTED
000812018 9801_ $$aFullTexts