001     812018
005     20221109161713.0
024 7 _ |a arXiv:1604.06296
|2 arXiv
024 7 _ |a 10.1016/j.cpc.2016.12.013
|2 doi
024 7 _ |a 2128/13743
|2 Handle
024 7 _ |a WOS:000393630800011
|2 WOS
024 7 _ |a altmetric:6868704
|2 altmetric
037 _ _ |a FZJ-2016-04315
082 _ _ |a 004
100 1 _ |a Lichtenstein, J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a High-performance functional Renormalization Group calculations for interacting fermions
260 _ _ |a Amsterdam
|c 2017
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1665082225_11828
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the $t$,$t'$ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a High-performance functional renormalization group for two-dimensional materials (jhpc26_20151101)
|0 G:(DE-Juel1)jhpc26_20151101
|c jhpc26_20151101
|f High-performance functional renormalization group for two-dimensional materials
|x 1
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a de la Peña, D. Sánchez
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rohe, D.
|0 P:(DE-Juel1)133032
|b 2
|u fzj
700 1 _ |a Di Napoli, E.
|0 P:(DE-Juel1)144723
|b 3
|u fzj
700 1 _ |a Honerkamp, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maier, S. A.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.cpc.2016.12.013
|0 PERI:(DE-600)1466511-6
|p 100-110
|t Computer physics communications
|v 213
|y 2017
|x 0010-4655
856 4 _ |u https://juser.fz-juelich.de/record/812018/files/1604.06296v2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/812018/files/1604.06296v2.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/812018/files/1604.06296v2.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/812018/files/1604.06296v2.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/812018/files/1604.06296v2.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/812018/files/1604.06296v2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:812018
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133032
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144723
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT PHYS COMMUN : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21