000812031 001__ 812031
000812031 005__ 20240711085631.0
000812031 0247_ $$2doi$$a10.1016/j.tsf.2016.07.010
000812031 0247_ $$2WOS$$aWOS:000381939700020
000812031 037__ $$aFZJ-2016-04327
000812031 041__ $$aEnglish
000812031 082__ $$a070
000812031 1001_ $$0P:(DE-Juel1)140492$$aBitzer, Martin$$b0$$eCorresponding author
000812031 245__ $$aSol-gel synthesis of thin solid Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ electrolyte films for Li-ion batteries
000812031 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000812031 3367_ $$2DRIVER$$aarticle
000812031 3367_ $$2DataCite$$aOutput Types/Journal article
000812031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1471421295_11137
000812031 3367_ $$2BibTeX$$aARTICLE
000812031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000812031 3367_ $$00$$2EndNote$$aJournal Article
000812031 520__ $$aThe application of a solid state electrolyte layer could greatly improve current Li-ion batteries in terms of safety and reliability. Garnet-type Li7La3Zr2O12 (LLZ) appears as a candidate material, since it shows the highest reported Li-ion conductivity of all oxide ceramics at room temperature (σ > 10− 4 S cm− 1) and at the same time chemical stability against lithium. In this paper, a sol-gel process is presented for fabricating homogeneous thin film LLZ layers. These layers were deposited using dip-coating and spin-coating methods. A stable Yttrium-doped Li-La-Zr-based sol with a particle size of d50 = 10 nm was used as coating liquid. Successful deposition of such layers was accomplished using a sol concentration of 0.04 mol/l, which yielded for each coating step a layer thickness of ~ 50 nm. The desired single phase LLZ material could be obtained after thermal treatment at 800 °C for 10 min in Argon. Ionic conductivity of the layers was demonstrated with impedance spectroscopy. Continuing work on the development of half-cells is also presented. Half-cells which contain the novel LLZ electrolyte layer, a LiCoO2 cathode and a steel support were synthesized and investigated. Of considerable importance was the prevention of Lanthanum diffusion and the formation of non-conductive phases (e.g. La2Li0.5Co0.5O4) at the required heating temperature of 800 °C. It is shown that these unwanted processes can be prevented and that a structure with a single phase LLZ and LiCoO2 layer can be obtained by modifying the heating program to a rapid thermal treatment (10 K/s, 800 °C, no holding time).
000812031 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000812031 7001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b1
000812031 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b2
000812031 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b3
000812031 773__ $$0PERI:(DE-600)1482896-0$$a10.1016/j.tsf.2016.07.010$$p128–134$$tThin solid films$$v615$$x0040-6090$$y2016
000812031 8564_ $$uhttps://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.pdf$$yRestricted
000812031 8564_ $$uhttps://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.gif?subformat=icon$$xicon$$yRestricted
000812031 8564_ $$uhttps://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000812031 8564_ $$uhttps://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000812031 8564_ $$uhttps://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000812031 8564_ $$uhttps://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000812031 909CO $$ooai:juser.fz-juelich.de:812031$$pVDB
000812031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000812031 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000812031 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000812031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTHIN SOLID FILMS : 2014
000812031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000812031 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000812031 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000812031 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000812031 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000812031 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000812031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000812031 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000812031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000812031 9141_ $$y2016
000812031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich$$b1$$kFZJ
000812031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b2$$kFZJ
000812031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich$$b3$$kFZJ
000812031 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000812031 920__ $$lyes
000812031 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000812031 980__ $$ajournal
000812031 980__ $$aVDB
000812031 980__ $$aUNRESTRICTED
000812031 980__ $$aI:(DE-Juel1)IEK-1-20101013
000812031 981__ $$aI:(DE-Juel1)IMD-2-20101013