001     812031
005     20240711085631.0
024 7 _ |2 doi
|a 10.1016/j.tsf.2016.07.010
024 7 _ |a WOS:000381939700020
|2 WOS
037 _ _ |a FZJ-2016-04327
041 _ _ |a English
082 _ _ |a 070
100 1 _ |0 P:(DE-Juel1)140492
|a Bitzer, Martin
|b 0
|e Corresponding author
245 _ _ |a Sol-gel synthesis of thin solid Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ electrolyte films for Li-ion batteries
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1471421295_11137
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The application of a solid state electrolyte layer could greatly improve current Li-ion batteries in terms of safety and reliability. Garnet-type Li7La3Zr2O12 (LLZ) appears as a candidate material, since it shows the highest reported Li-ion conductivity of all oxide ceramics at room temperature (σ > 10− 4 S cm− 1) and at the same time chemical stability against lithium. In this paper, a sol-gel process is presented for fabricating homogeneous thin film LLZ layers. These layers were deposited using dip-coating and spin-coating methods. A stable Yttrium-doped Li-La-Zr-based sol with a particle size of d50 = 10 nm was used as coating liquid. Successful deposition of such layers was accomplished using a sol concentration of 0.04 mol/l, which yielded for each coating step a layer thickness of ~ 50 nm. The desired single phase LLZ material could be obtained after thermal treatment at 800 °C for 10 min in Argon. Ionic conductivity of the layers was demonstrated with impedance spectroscopy. Continuing work on the development of half-cells is also presented. Half-cells which contain the novel LLZ electrolyte layer, a LiCoO2 cathode and a steel support were synthesized and investigated. Of considerable importance was the prevention of Lanthanum diffusion and the formation of non-conductive phases (e.g. La2Li0.5Co0.5O4) at the required heating temperature of 800 °C. It is shown that these unwanted processes can be prevented and that a structure with a single phase LLZ and LiCoO2 layer can be obtained by modifying the heating program to a rapid thermal treatment (10 K/s, 800 °C, no holding time).
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)129669
|a Van Gestel, Tim
|b 1
700 1 _ |0 P:(DE-Juel1)129580
|a Uhlenbruck, Sven
|b 2
700 1 _ |0 P:(DE-Juel1)129594
|a Buchkremer, Hans Peter
|b 3
773 _ _ |0 PERI:(DE-600)1482896-0
|a 10.1016/j.tsf.2016.07.010
|p 128–134
|t Thin solid films
|v 615
|x 0040-6090
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:812031
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129669
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129580
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129594
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b THIN SOLID FILMS : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer review
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21