Hauptseite > Publikationsdatenbank > Sol-gel synthesis of thin solid Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ electrolyte films for Li-ion batteries > print |
001 | 812031 | ||
005 | 20240711085631.0 | ||
024 | 7 | _ | |2 doi |a 10.1016/j.tsf.2016.07.010 |
024 | 7 | _ | |a WOS:000381939700020 |2 WOS |
037 | _ | _ | |a FZJ-2016-04327 |
041 | _ | _ | |a English |
082 | _ | _ | |a 070 |
100 | 1 | _ | |0 P:(DE-Juel1)140492 |a Bitzer, Martin |b 0 |e Corresponding author |
245 | _ | _ | |a Sol-gel synthesis of thin solid Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ electrolyte films for Li-ion batteries |
260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier |c 2016 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1471421295_11137 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a The application of a solid state electrolyte layer could greatly improve current Li-ion batteries in terms of safety and reliability. Garnet-type Li7La3Zr2O12 (LLZ) appears as a candidate material, since it shows the highest reported Li-ion conductivity of all oxide ceramics at room temperature (σ > 10− 4 S cm− 1) and at the same time chemical stability against lithium. In this paper, a sol-gel process is presented for fabricating homogeneous thin film LLZ layers. These layers were deposited using dip-coating and spin-coating methods. A stable Yttrium-doped Li-La-Zr-based sol with a particle size of d50 = 10 nm was used as coating liquid. Successful deposition of such layers was accomplished using a sol concentration of 0.04 mol/l, which yielded for each coating step a layer thickness of ~ 50 nm. The desired single phase LLZ material could be obtained after thermal treatment at 800 °C for 10 min in Argon. Ionic conductivity of the layers was demonstrated with impedance spectroscopy. Continuing work on the development of half-cells is also presented. Half-cells which contain the novel LLZ electrolyte layer, a LiCoO2 cathode and a steel support were synthesized and investigated. Of considerable importance was the prevention of Lanthanum diffusion and the formation of non-conductive phases (e.g. La2Li0.5Co0.5O4) at the required heating temperature of 800 °C. It is shown that these unwanted processes can be prevented and that a structure with a single phase LLZ and LiCoO2 layer can be obtained by modifying the heating program to a rapid thermal treatment (10 K/s, 800 °C, no holding time). |
536 | _ | _ | |0 G:(DE-HGF)POF3-131 |a 131 - Electrochemical Storage (POF3-131) |c POF3-131 |f POF III |x 0 |
700 | 1 | _ | |0 P:(DE-Juel1)129669 |a Van Gestel, Tim |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)129580 |a Uhlenbruck, Sven |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)129594 |a Buchkremer, Hans Peter |b 3 |
773 | _ | _ | |0 PERI:(DE-600)1482896-0 |a 10.1016/j.tsf.2016.07.010 |p 128–134 |t Thin solid films |v 615 |x 0040-6090 |y 2016 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/812031/files/1-s2.0-S0040609016303157-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:812031 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129669 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129580 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129594 |a Forschungszentrum Jülich |b 3 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-131 |1 G:(DE-HGF)POF3-130 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Speicher und vernetzte Infrastrukturen |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |0 StatID:(DE-HGF)0550 |2 StatID |a No Authors Fulltext |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b THIN SOLID FILMS : 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer review |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|