001     817669
005     20240711092235.0
024 7 _ |a 10.1016/j.jeurceramsoc.2016.05.021
|2 doi
024 7 _ |a WOS:000379888400025
|2 WOS
037 _ _ |a FZJ-2016-04337
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Forster, Emanuel
|0 P:(DE-Juel1)145588
|b 0
|e Corresponding author
245 _ _ |a Stability of Ceramic Materials for H$_{2}$ Transport Membranes in Gasification Environment Under the Influence of Gas Contaminants
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1471344399_10943
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mixed protonic-electronic conducting membrane materials offer an alternative method for separating hydrogen from carbon dioxide after the water-gas shift reaction. However, the membrane materials need to be tested for thermochemical stability at challenging operating conditions. BaCe0.5Zr0.4Y0.1O3 − δ, BaCe0.2Zr0.7Yb0.08Ni0.02O3 − δ, and La5.5WO12 − δ were exposed to gas atmospheres containing contaminants like H2S, HCl, KCl, KOH, NaCl, and NaOH. The gas composition of the carrier gas flow simulates the atmospheres before and after the water-gas shift reaction. Sintered samples were exposed at 600 °C and 900 °C and subsequently analyzed by SEM/EDX and powder-XRD. Afterwards the samples were exposed at 900 °C in powder form and then characterized with XRD. Lanthanum tungstate showed very stable behavior for all contaminants. Barium zirconates tended to form chlorine compounds, especially BaCe0.5Zr0.4Y0.1O3 − δ. BaCe0.2Zr0.7Yb0.08Ni0.02O3 − δ on the other hand showed much more stability, but sustained intergranular corrosion with higher temperatures and syngas conditions when the atmosphere contained potassium.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Holt van, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 2
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 3
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 4
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 5
773 _ _ |a 10.1016/j.jeurceramsoc.2016.05.021
|0 PERI:(DE-600)2013983-4
|n 14
|p 3457–3464
|t Journal of the European Ceramic Society
|v 36
|y 2016
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/817669/files/1-s2.0-S0955221916302618-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/817669/files/1-s2.0-S0955221916302618-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/817669/files/1-s2.0-S0955221916302618-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/817669/files/1-s2.0-S0955221916302618-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/817669/files/1-s2.0-S0955221916302618-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/817669/files/1-s2.0-S0955221916302618-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:817669
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21