000817671 001__ 817671
000817671 005__ 20240709094437.0
000817671 0247_ $$2doi$$a10.1002/aic.15198
000817671 0247_ $$2WOS$$aWOS:000374705500017
000817671 037__ $$aFZJ-2016-04339
000817671 041__ $$aEnglish
000817671 082__ $$a660
000817671 1001_ $$0P:(DE-HGF)0$$aTanner, J.$$b0
000817671 245__ $$aHigh Temperature Pyrolysis and CO2 Gasification of Victorian Brown Coal and Rhenish Lignite in an Entrained Flow Reactor
000817671 260__ $$aHoboken, NJ$$bWiley$$c2016
000817671 3367_ $$2DRIVER$$aarticle
000817671 3367_ $$2DataCite$$aOutput Types/Journal article
000817671 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1471257633_31214
000817671 3367_ $$2BibTeX$$aARTICLE
000817671 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817671 3367_ $$00$$2EndNote$$aJournal Article
000817671 520__ $$aThe low rank coals from Victoria, Australia, and Rhineland, Germany are of interest for use in entrained flow gasification applications. Therefore, a high temperature, electrically heated, entrained flow apparatus has been designed to address the shortage of fundamental data. A Victorian brown coal and a Rhenish lignite were subjected to rapid, entrained flow pyrolysis between 1100 and 1400°C to generate high surface area chars, which were subsequently gasified at the same temperatures under CO2 in N2 between 10 and 80 vol %. The Victorian coal was more reactive than the Rhenish coal, and peak char reactivity was observed at 1200°C. Char conversion and syngas yield increased with increasing temperature and plateaued at high CO2 concentration. Ammonia and tar species were negligible and HCN and H2S were present in parts per million (volume) concentrations in the cooled, filtered syngas. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2101–2111, 2016
000817671 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000817671 7001_ $$0P:(DE-HGF)0$$aBhattacharya, S.$$b1$$eCorresponding author
000817671 7001_ $$0P:(DE-Juel1)129688$$aBläsing, Marc$$b2
000817671 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b3
000817671 773__ $$0PERI:(DE-600)2020333-0$$a10.1002/aic.15198$$n6$$p2101-2111$$tAIChE journal$$v62$$x0001-1541$$y2016
000817671 909CO $$ooai:juser.fz-juelich.de:817671$$pVDB
000817671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129688$$aForschungszentrum Jülich$$b2$$kFZJ
000817671 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b3$$kFZJ
000817671 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000817671 9141_ $$y2016
000817671 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817671 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000817671 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAICHE J : 2015
000817671 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817671 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817671 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817671 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817671 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000817671 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817671 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000817671 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817671 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000817671 980__ $$ajournal
000817671 980__ $$aVDB
000817671 980__ $$aUNRESTRICTED
000817671 980__ $$aI:(DE-Juel1)IEK-2-20101013
000817671 981__ $$aI:(DE-Juel1)IMD-1-20101013