000817737 001__ 817737
000817737 005__ 20240711101456.0
000817737 0247_ $$2doi$$a10.1016/j.electacta.2016.12.016
000817737 0247_ $$2ISSN$$a0013-4686
000817737 0247_ $$2ISSN$$a1873-3859
000817737 0247_ $$2WOS$$aWOS:000392773100011
000817737 037__ $$aFZJ-2016-04380
000817737 082__ $$a540
000817737 1001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b0$$ufzj
000817737 245__ $$aAn Analysis of Contact Problems in Solid Oxide Fuel Cell Stacks Arising from Differences in Thermal Expansion Coefficients
000817737 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000817737 3367_ $$2DRIVER$$aarticle
000817737 3367_ $$2DataCite$$aOutput Types/Journal article
000817737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484059859_19262
000817737 3367_ $$2BibTeX$$aARTICLE
000817737 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817737 3367_ $$00$$2EndNote$$aJournal Article
000817737 520__ $$aThe successful operation of solid oxide fuel cells (SOFC) imposes high demands on the similarity of the thermal expansion coefficients of the materials used. This is not only due to thermo-mechanical factors but also because of the risk of contact loss via the formation of a micro-gap between the electrodes and adjacent contact layers caused by temperature changes. The origin of the formation of such a gap between the different layers in an SOFC stack is investigated on the basis of various material combinations. A comparison with successful and failed stack test results reveals that there is a high probability of contact problems if the calculated gap on the cathode side exceeds 200 nm. This limit relates to the maximum possible elastic deformation of the combination of the cathode and cathode contact layer (CCL). Such contact problems can be avoided in the current design by utilizing an appropriate combination of the cathode, CCL and glass-ceramic material that can be selected on the basis of the methodology outlined in the current work. This optimization in materials selection will help to establish a stack technology that allows high power density with a minimized risk of failure of single layers.
000817737 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000817737 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000817737 588__ $$aDataset connected to CrossRef
000817737 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2016.12.016$$gVol. 223, p. 100 - 108$$p100 - 108$$tElectrochimica acta$$v223$$x0013-4686$$y2017
000817737 8564_ $$uhttps://juser.fz-juelich.de/record/817737/files/1-s2.0-S0013468616325622-main.pdf$$yRestricted
000817737 8564_ $$uhttps://juser.fz-juelich.de/record/817737/files/1-s2.0-S0013468616325622-main.gif?subformat=icon$$xicon$$yRestricted
000817737 8564_ $$uhttps://juser.fz-juelich.de/record/817737/files/1-s2.0-S0013468616325622-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000817737 8564_ $$uhttps://juser.fz-juelich.de/record/817737/files/1-s2.0-S0013468616325622-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000817737 8564_ $$uhttps://juser.fz-juelich.de/record/817737/files/1-s2.0-S0013468616325622-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000817737 8564_ $$uhttps://juser.fz-juelich.de/record/817737/files/1-s2.0-S0013468616325622-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000817737 909CO $$ooai:juser.fz-juelich.de:817737$$pVDB
000817737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b0$$kFZJ
000817737 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000817737 9141_ $$y2017
000817737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817737 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000817737 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000817737 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000817737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817737 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817737 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817737 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000817737 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000817737 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000817737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817737 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000817737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817737 920__ $$lyes
000817737 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000817737 980__ $$ajournal
000817737 980__ $$aVDB
000817737 980__ $$aUNRESTRICTED
000817737 980__ $$aI:(DE-Juel1)IEK-3-20101013
000817737 981__ $$aI:(DE-Juel1)ICE-2-20101013