000817739 001__ 817739
000817739 005__ 20220930130103.0
000817739 0247_ $$2doi$$a10.3389/fpls.2016.00895
000817739 0247_ $$2Handle$$a2128/12204
000817739 0247_ $$2WOS$$aWOS:000378593500001
000817739 0247_ $$2altmetric$$aaltmetric:9058453
000817739 0247_ $$2pmid$$apmid:27446125
000817739 037__ $$aFZJ-2016-04382
000817739 041__ $$aEnglish
000817739 082__ $$a570
000817739 1001_ $$0P:(DE-HGF)0$$aLechthaler, Silvia$$b0
000817739 245__ $$aRhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes
000817739 260__ $$aLausanne$$bFrontiers Media88991$$c2016
000817739 3367_ $$2DRIVER$$aarticle
000817739 3367_ $$2DataCite$$aOutput Types/Journal article
000817739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472029968_26309
000817739 3367_ $$2BibTeX$$aARTICLE
000817739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817739 3367_ $$00$$2EndNote$$aJournal Article
000817739 520__ $$aSome of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl.
000817739 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000817739 588__ $$aDataset connected to CrossRef
000817739 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000817739 7001_ $$0P:(DE-HGF)0$$aRobert, Elisabeth M. R.$$b1
000817739 7001_ $$0P:(DE-HGF)0$$aTonné, Nathalie$$b2
000817739 7001_ $$0P:(DE-HGF)0$$aPrusova, Alena$$b3
000817739 7001_ $$0P:(DE-HGF)0$$aGerkema, Edo$$b4
000817739 7001_ $$0P:(DE-HGF)0$$aVan As, Henk$$b5
000817739 7001_ $$0P:(DE-HGF)0$$aKoedam, Nico$$b6
000817739 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel$$b7$$eCorresponding author
000817739 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2016.00895$$gVol. 7$$p895$$tFrontiers in Functional Plant Ecology$$v7$$x1664-462X$$y2016
000817739 8564_ $$uhttps://juser.fz-juelich.de/record/817739/files/fpls-07-00895.pdf$$yOpenAccess
000817739 8564_ $$uhttps://juser.fz-juelich.de/record/817739/files/fpls-07-00895.gif?subformat=icon$$xicon$$yOpenAccess
000817739 8564_ $$uhttps://juser.fz-juelich.de/record/817739/files/fpls-07-00895.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817739 8564_ $$uhttps://juser.fz-juelich.de/record/817739/files/fpls-07-00895.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817739 8564_ $$uhttps://juser.fz-juelich.de/record/817739/files/fpls-07-00895.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817739 8564_ $$uhttps://juser.fz-juelich.de/record/817739/files/fpls-07-00895.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817739 8767_ $$92016-07-25$$d2016-07-25$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 588,80
000817739 909CO $$ooai:juser.fz-juelich.de:817739$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000817739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b7$$kFZJ
000817739 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000817739 9141_ $$y2016
000817739 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000817739 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817739 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000817739 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000817739 920__ $$lyes
000817739 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000817739 9801_ $$aFullTexts
000817739 980__ $$ajournal
000817739 980__ $$aVDB
000817739 980__ $$aUNRESTRICTED
000817739 980__ $$aI:(DE-Juel1)IBG-2-20101118
000817739 980__ $$aAPC