TY  - JOUR
AU  - An, Fengpeng
AU  - An, Guangpeng
AU  - An, Qi
AU  - Antonelli, Vito
AU  - Baussan, Eric
AU  - Beacom, John
AU  - Bezrukov, Leonid
AU  - Blyth, Simon
AU  - Brugnera, Riccardo
AU  - Avanzini, Margherita Buizza
AU  - Busto, Jose
AU  - Cabrera, Anatael
AU  - Cai, Hao
AU  - Cai, Xiao
AU  - Cammi, Antonio
AU  - Cao, Guofu
AU  - Cao, Jun
AU  - Chang, Yun
AU  - Chen, Shaomin
AU  - Chen, Shenjian
AU  - Chen, Yixue
AU  - Chiesa, Davide
AU  - Clemenza, Massimiliano
AU  - Clerbaux, Barbara
AU  - Conrad, Janet
AU  - D’Angelo, Davide
AU  - Kerret, Hervé De
AU  - Deng, Zhi
AU  - Deng, Ziyan
AU  - Ding, Yayun
AU  - Djurcic, Zelimir
AU  - Dornic, Damien
AU  - Dracos, Marcos
AU  - Drapier, Olivier
AU  - Dusini, Stefano
AU  - Dye, Stephen
AU  - Enqvist, Timo
AU  - Fan, Donghua
AU  - Fang, Jian
AU  - Favart, Laurent
AU  - Ford, Richard
AU  - Göger-Neff, Marianne
AU  - Gan, Haonan
AU  - Garfagnini, Alberto
AU  - Giammarchi, Marco
AU  - Gonchar, Maxim
AU  - Gong, Guanghua
AU  - Gong, Hui
AU  - Gonin, Michel
AU  - Grassi, Marco
AU  - Grewing, Christian
AU  - Guan, Mengyun
AU  - Guarino, Vic
AU  - Guo, Gang
AU  - Guo, Wanlei
AU  - Guo, Xin-Heng
AU  - Hagner, Caren
AU  - Han, Ran
AU  - He, Miao
AU  - Heng, Yuekun
AU  - Hsiung, Yee
AU  - Hu, Jun
AU  - Hu, Shouyang
AU  - Hu, Tao
AU  - Huang, Hanxiong
AU  - Huang, Xingtao
AU  - Huo, Lei
AU  - Ioannisian, Ara
AU  - Jeitler, Manfred
AU  - Ji, Xiangdong
AU  - Jiang, Xiaoshan
AU  - Jollet, Cécile
AU  - Kang, Li
AU  - Karagounis, Michael
AU  - Kazarian, Narine
AU  - Krumshteyn, Zinovy
AU  - Kruth, Andre
AU  - Kuusiniemi, Pasi
AU  - Lachenmaier, Tobias
AU  - Leitner, Rupert
AU  - Li, Chao
AU  - Li, Jiaxing
AU  - Li, Weidong
AU  - Li, Weiguo
AU  - Li, Xiaomei
AU  - Li, Xiaonan
AU  - Li, Yi
AU  - Li, Yufeng
AU  - Li, Zhi-Bing
AU  - Liang, Hao
AU  - Lin, Guey-Lin
AU  - Lin, Tao
AU  - Lin, Yen-Hsun
AU  - Ling, Jiajie
AU  - Lippi, Ivano
AU  - Liu, Dawei
AU  - Liu, Hongbang
AU  - Liu, Hu
AU  - Liu, Jianglai
AU  - Liu, Jianli
AU  - Liu, Jinchang
AU  - Liu, Qian
AU  - Liu, Shubin
AU  - Liu, Shulin
AU  - Lombardi, Paolo
AU  - Long, Yongbing
AU  - Lu, Haoqi
AU  - Lu, Jiashu
AU  - Lu, Jingbin
AU  - Lu, Junguang
AU  - Lubsandorzhiev, Bayarto
AU  - Ludhova, Livia
AU  - Luo, Shu
AU  - Lyashuk, Vladimir
AU  - Möllenberg, Randolph
AU  - Ma, Xubo
AU  - Mantovani, Fabio
AU  - Mao, Yajun
AU  - Mari, Stefano M
AU  - McDonough, William F
AU  - Meng, Guang
AU  - Meregaglia, Anselmo
AU  - Meroni, Emanuela
AU  - Mezzetto, Mauro
AU  - Miramonti, Lino
AU  - Mueller, Thomas
AU  - Naumov, Dmitry
AU  - Oberauer, Lothar
AU  - Ochoa-Ricoux, Juan Pedro
AU  - Olshevskiy, Alexander
AU  - Ortica, Fausto
AU  - Paoloni, Alessandro
AU  - Peng, Haiping
AU  - Peng, Jen-Chieh
AU  - Previtali, Ezio
AU  - Qi, Ming
AU  - Qian, Sen
AU  - Qian, Xin
AU  - Qian, Yongzhong
AU  - Qin, Zhonghua
AU  - Raffelt, Georg
AU  - Ranucci, Gioacchino
AU  - Ricci, Barbara
AU  - Robens, Markus
AU  - Romani, Aldo
AU  - Ruan, Xiangdong
AU  - Ruan, Xichao
AU  - Salamanna, Giuseppe
AU  - Shaevitz, Mike
AU  - Sinev, Valery
AU  - Sirignano, Chiara
AU  - Sisti, Monica
AU  - Smirnov, Oleg
AU  - Soiron, Michael
AU  - Stahl, Achim
AU  - Stanco, Luca
AU  - Steinmann, Jochen
AU  - Sun, Xilei
AU  - Sun, Yongjie
AU  - Taichenachev, Dmitriy
AU  - Tang, Jian
AU  - Tkachev, Igor
AU  - Trzaska, Wladyslaw
AU  - Waasen, Stefan van
AU  - Volpe, Cristina
AU  - Vorobel, Vit
AU  - Votano, Lucia
AU  - Wang, Chung-Hsiang
AU  - Wang, Guoli
AU  - Wang, Hao
AU  - Wang, Meng
AU  - Wang, Ruiguang
AU  - Wang, Siguang
AU  - Wang, Wei
AU  - Wang, Yi
AU  - Wang, Yifang
AU  - Wang, Zhe
AU  - Wang, Zheng
AU  - Wang, Zhigang
AU  - Wang, Zhimin
AU  - Wei, Wei
AU  - Wen, Liangjian
AU  - Wiebusch, Christopher
AU  - Wonsak, Björn
AU  - Wu, Qun
AU  - Wulz, Claudia-Elisabeth
AU  - Wurm, Michael
AU  - Xi, Yufei
AU  - Xia, Dongmei
AU  - Xie, Yuguang
AU  - Xing, Zhi-zhong
AU  - Xu, Jilei
AU  - Yan, Baojun
AU  - Yang, Changgen
AU  - Yang, Chaowen
AU  - Yang, Guang
AU  - Yang, Lei
AU  - Yang, Yifan
AU  - Yao, Yu
AU  - Yegin, Ugur
AU  - Yermia, Frédéric
AU  - You, Zhengyun
AU  - Yu, Boxiang
AU  - Yu, Chunxu
AU  - Yu, Zeyuan
AU  - Zavatarelli, Sandra
AU  - Zhan, Liang
AU  - Zhang, Chao
AU  - Zhang, Hong-Hao
AU  - Zhang, Jiawen
AU  - Zhang, Jingbo
AU  - Zhang, Qingmin
AU  - Zhang, Yu-Mei
AU  - Zhang, Zhenyu
AU  - Zhao, Zhenghua
AU  - Zheng, Yangheng
AU  - Zhong, Weili
AU  - Zhou, Guorong
AU  - Zhou, Jing
AU  - Zhou, Li
AU  - Zhou, Rong
AU  - Zhou, Shun
AU  - Zhou, Wenxiong
AU  - Zhou, Xiang
AU  - Zhou, Yeling
AU  - Zhou, Yufeng
AU  - Zou, Jiaheng
TI  - Neutrino physics with JUNO
JO  - Journal of physics / G
VL  - 43
IS  - 3
SN  - 1361-6471
CY  - Bristol
PB  - IOP Publ.
M1  - FZJ-2016-04398
SP  - 030401 -
PY  - 2016
AB  - The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters ${\mathrm{sin}}^{2}{\theta }_{12}$, ${\rm{\Delta }}{m}_{21}^{2}$, and $| {\rm{\Delta }}{m}_{{ee}}^{2}| $ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the ${\theta }_{23}$ mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. []
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000372064200001
DO  - DOI:10.1088/0954-3899/43/3/030401
UR  - https://juser.fz-juelich.de/record/817755
ER  -