000817802 001__ 817802
000817802 005__ 20210129224029.0
000817802 0247_ $$2doi$$a10.1103/PhysRevE.94.022126
000817802 0247_ $$2ISSN$$a2470-0045
000817802 0247_ $$2ISSN$$a2470-0053
000817802 0247_ $$2Handle$$a2128/12219
000817802 0247_ $$2WOS$$aWOS:000381607300002
000817802 0247_ $$2altmetric$$aaltmetric:8139125
000817802 0247_ $$2pmid$$apmid:27627265
000817802 037__ $$aFZJ-2016-04441
000817802 082__ $$a530
000817802 1001_ $$0P:(DE-HGF)0$$aZhao, P.$$b0
000817802 245__ $$aDynamics of open quantum spin systems: An assessment of the quantum master equation approach
000817802 260__ $$aWoodbury, NY$$bInst.$$c2016
000817802 3367_ $$2DRIVER$$aarticle
000817802 3367_ $$2DataCite$$aOutput Types/Journal article
000817802 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1476349756_31321
000817802 3367_ $$2BibTeX$$aARTICLE
000817802 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817802 3367_ $$00$$2EndNote$$aJournal Article
000817802 520__ $$aData of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-12 particle interacting with a bath of up to 32 spin-12 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-12 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.
000817802 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000817802 588__ $$aDataset connected to CrossRef
000817802 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b1$$eCorresponding author
000817802 7001_ $$0P:(DE-HGF)0$$aMiyashita, S.$$b2
000817802 7001_ $$0P:(DE-Juel1)144355$$aJin, F.$$b3$$ufzj
000817802 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b4$$ufzj
000817802 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.94.022126$$gVol. 94, no. 2, p. 022126$$n2$$p022126$$tPhysical review / E$$v94$$x1063-651X$$y2016
000817802 8564_ $$uhttps://juser.fz-juelich.de/record/817802/files/PhysRevE.94.022126.pdf$$yOpenAccess
000817802 8564_ $$uhttps://juser.fz-juelich.de/record/817802/files/PhysRevE.94.022126.gif?subformat=icon$$xicon$$yOpenAccess
000817802 8564_ $$uhttps://juser.fz-juelich.de/record/817802/files/PhysRevE.94.022126.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817802 8564_ $$uhttps://juser.fz-juelich.de/record/817802/files/PhysRevE.94.022126.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817802 8564_ $$uhttps://juser.fz-juelich.de/record/817802/files/PhysRevE.94.022126.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817802 8564_ $$uhttps://juser.fz-juelich.de/record/817802/files/PhysRevE.94.022126.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817802 909CO $$ooai:juser.fz-juelich.de:817802$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000817802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b3$$kFZJ
000817802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000817802 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000817802 9141_ $$y2016
000817802 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817802 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817802 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000817802 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000817802 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817802 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817802 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817802 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817802 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000817802 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015
000817802 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817802 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000817802 980__ $$ajournal
000817802 980__ $$aVDB
000817802 980__ $$aI:(DE-Juel1)JSC-20090406
000817802 980__ $$aUNRESTRICTED
000817802 9801_ $$aFullTexts