000817803 001__ 817803
000817803 005__ 20210129224030.0
000817803 0247_ $$2doi$$a10.1098/rsfs.2016.0024
000817803 0247_ $$2ISSN$$a2042-8898
000817803 0247_ $$2ISSN$$a2042-8901
000817803 0247_ $$2WOS$$aWOS:000382192900001
000817803 0247_ $$2altmetric$$aaltmetric:21830389
000817803 0247_ $$2pmid$$apmid:27708757
000817803 037__ $$aFZJ-2016-04442
000817803 041__ $$aEnglish
000817803 082__ $$a570
000817803 1001_ $$0P:(DE-HGF)0$$aSoiné, Jérôme R. D.$$b0$$eCorresponding author
000817803 245__ $$aMeasuring cellular traction forces on non-planar substrates
000817803 260__ $$aLondon$$bRoyal Society Publishing$$c2016
000817803 3367_ $$2DRIVER$$aarticle
000817803 3367_ $$2DataCite$$aOutput Types/Journal article
000817803 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1471962534_27317
000817803 3367_ $$2BibTeX$$aARTICLE
000817803 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817803 3367_ $$00$$2EndNote$$aJournal Article
000817803 520__ $$aAnimal cells use traction forces to sense the mechanics and geometry of their environment. Measuring these traction forces requires a workflow combining cell experiments, image processing and force reconstruction based on elasticity theory. Such procedures have already been established mainly for planar substrates, in which case one can use the Green's function formalism. Here we introduce a workflow to measure traction forces of cardiac myofibroblasts on non-planar elastic substrates. Soft elastic substrates with a wave-like topology were micromoulded from polydimethylsiloxane and fluorescent marker beads were distributed homogeneously in the substrate. Using feature vector-based tracking of these marker beads, we first constructed a hexahedral mesh for the substrate. We then solved the direct elastic boundary volume problem on this mesh using the finite-element method. Using data simulations, we show that the traction forces can be reconstructed from the substrate deformations by solving the corresponding inverse problem with an L1-norm for the residue and an L2-norm for a zeroth-order Tikhonov regularization. Applying this procedure to the experimental data, we find that cardiac myofibroblast cells tend to align both their shapes and their forces with the long axis of the deformable wavy substrate.
000817803 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000817803 588__ $$aDataset connected to CrossRef
000817803 7001_ $$0P:(DE-Juel1)128815$$aHersch, Nils$$b1$$ufzj
000817803 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b2$$ufzj
000817803 7001_ $$0P:(DE-Juel1)128813$$aHampe, Nico$$b3$$ufzj
000817803 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b4$$ufzj
000817803 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b5$$ufzj
000817803 7001_ $$00000-0003-1483-640X$$aSchwarz, Ulrich S.$$b6$$eCorresponding author
000817803 773__ $$0PERI:(DE-600)2585655-8$$a10.1098/rsfs.2016.0024$$gVol. 6, no. 5, p. 20160024 -$$n5$$p20160024 -$$tInterface focus$$v6$$x2042-8901$$y2016
000817803 909CO $$ooai:juser.fz-juelich.de:817803$$pVDB
000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128815$$aForschungszentrum Jülich$$b1$$kFZJ
000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b2$$kFZJ
000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128813$$aForschungszentrum Jülich$$b3$$kFZJ
000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b4$$kFZJ
000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b5$$kFZJ
000817803 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000817803 9141_ $$y2016
000817803 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817803 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000817803 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINTERFACE FOCUS : 2015
000817803 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817803 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817803 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817803 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817803 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000817803 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817803 920__ $$lyes
000817803 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000817803 980__ $$ajournal
000817803 980__ $$aVDB
000817803 980__ $$aUNRESTRICTED
000817803 980__ $$aI:(DE-Juel1)ICS-7-20110106
000817803 981__ $$aI:(DE-Juel1)IBI-2-20200312