000817803 001__ 817803 000817803 005__ 20210129224030.0 000817803 0247_ $$2doi$$a10.1098/rsfs.2016.0024 000817803 0247_ $$2ISSN$$a2042-8898 000817803 0247_ $$2ISSN$$a2042-8901 000817803 0247_ $$2WOS$$aWOS:000382192900001 000817803 0247_ $$2altmetric$$aaltmetric:21830389 000817803 0247_ $$2pmid$$apmid:27708757 000817803 037__ $$aFZJ-2016-04442 000817803 041__ $$aEnglish 000817803 082__ $$a570 000817803 1001_ $$0P:(DE-HGF)0$$aSoiné, Jérôme R. D.$$b0$$eCorresponding author 000817803 245__ $$aMeasuring cellular traction forces on non-planar substrates 000817803 260__ $$aLondon$$bRoyal Society Publishing$$c2016 000817803 3367_ $$2DRIVER$$aarticle 000817803 3367_ $$2DataCite$$aOutput Types/Journal article 000817803 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1471962534_27317 000817803 3367_ $$2BibTeX$$aARTICLE 000817803 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000817803 3367_ $$00$$2EndNote$$aJournal Article 000817803 520__ $$aAnimal cells use traction forces to sense the mechanics and geometry of their environment. Measuring these traction forces requires a workflow combining cell experiments, image processing and force reconstruction based on elasticity theory. Such procedures have already been established mainly for planar substrates, in which case one can use the Green's function formalism. Here we introduce a workflow to measure traction forces of cardiac myofibroblasts on non-planar elastic substrates. Soft elastic substrates with a wave-like topology were micromoulded from polydimethylsiloxane and fluorescent marker beads were distributed homogeneously in the substrate. Using feature vector-based tracking of these marker beads, we first constructed a hexahedral mesh for the substrate. We then solved the direct elastic boundary volume problem on this mesh using the finite-element method. Using data simulations, we show that the traction forces can be reconstructed from the substrate deformations by solving the corresponding inverse problem with an L1-norm for the residue and an L2-norm for a zeroth-order Tikhonov regularization. Applying this procedure to the experimental data, we find that cardiac myofibroblast cells tend to align both their shapes and their forces with the long axis of the deformable wavy substrate. 000817803 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0 000817803 588__ $$aDataset connected to CrossRef 000817803 7001_ $$0P:(DE-Juel1)128815$$aHersch, Nils$$b1$$ufzj 000817803 7001_ $$0P:(DE-Juel1)129308$$aDreissen, Georg$$b2$$ufzj 000817803 7001_ $$0P:(DE-Juel1)128813$$aHampe, Nico$$b3$$ufzj 000817803 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b4$$ufzj 000817803 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b5$$ufzj 000817803 7001_ $$00000-0003-1483-640X$$aSchwarz, Ulrich S.$$b6$$eCorresponding author 000817803 773__ $$0PERI:(DE-600)2585655-8$$a10.1098/rsfs.2016.0024$$gVol. 6, no. 5, p. 20160024 -$$n5$$p20160024 -$$tInterface focus$$v6$$x2042-8901$$y2016 000817803 909CO $$ooai:juser.fz-juelich.de:817803$$pVDB 000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128815$$aForschungszentrum Jülich$$b1$$kFZJ 000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129308$$aForschungszentrum Jülich$$b2$$kFZJ 000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128813$$aForschungszentrum Jülich$$b3$$kFZJ 000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b4$$kFZJ 000817803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b5$$kFZJ 000817803 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000817803 9141_ $$y2016 000817803 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000817803 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000817803 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINTERFACE FOCUS : 2015 000817803 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000817803 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000817803 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000817803 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000817803 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000817803 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000817803 920__ $$lyes 000817803 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0 000817803 980__ $$ajournal 000817803 980__ $$aVDB 000817803 980__ $$aUNRESTRICTED 000817803 980__ $$aI:(DE-Juel1)ICS-7-20110106 000817803 981__ $$aI:(DE-Juel1)IBI-2-20200312