001     817807
005     20210129224030.0
024 7 _ |a 10.1093/aob/mcw112
|2 doi
024 7 _ |a 0003-4754
|2 ISSN
024 7 _ |a 0305-7364
|2 ISSN
024 7 _ |a 1095-8290
|2 ISSN
024 7 _ |a WOS:000383591200003
|2 WOS
024 7 _ |a altmetric:10150424
|2 altmetric
024 7 _ |a pmid:27474507
|2 pmid
037 _ _ |a FZJ-2016-04446
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Dathe, A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
260 _ _ |a Oxford
|c 2016
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1472715528_15959
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Backgrounds and Aims Crops with reduced requirement for nitrogen (N) fertilizer would have substantial bene-fits in developed nations, while improving food security in developing nations. This study employs the functionalstructural plant model SimRoot to test the hypothesis that variation in the growth angles of axial roots of maize (Zeamays L.) is an important determinant of N capture. Methods Six phenotypes contrasting in axial root growth angles were modelled for 42 d at seven soil nitrate lev-els from 10 to 250 kg ha À1 in a sand and a silt loam, and five precipitation regimes ranging from 0Á5Â to 1Á5Â ofan ambient rainfall pattern. Model results were compared with soil N measurements of field sites with silt loam andloamy sand textures. Key Results For optimal nitrate uptake, root foraging must coincide with nitrate availability in the soil profile,which depends on soil type and precipitation regime. The benefit of specific root architectures for efficient N uptakeincreases with decreasing soil N content, while the effect of soil type increases with increasing soil N level.Extreme root architectures are beneficial under extreme environmental conditions. Extremely shallow root systemsperform well under reduced precipitation, but perform poorly with ambient and greater precipitation. Dimorphicphenotypes with normal or shallow seminal and very steep nodal roots performed well in all scenarios, and consis-tently outperformed the steep phenotypes. Nitrate uptake increased under reduced leaching conditions in the siltloam and with low precipitation. Conclusions Results support the hypothesis that root growth angles are primary determinants of N acquisition inmaize. With decreasing soil N status, optimal angles resulted in 15–50 % greater N acquisition over 42 d. Optimalroot phenotypes for N capture varied with soil and precipitation regimes, suggesting that genetic selection for rootphenotypes could be tailored to specific environments.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Postma, Johannes Auke
|0 P:(DE-Juel1)144879
|b 1
700 1 _ |a Postma-Blaauw, M. B.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lynch, J. P.
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1093/aob/mcw112
|g p. mcw112 -
|0 PERI:(DE-600)1461328-1
|n 3
|p 401-414
|t Annals of botany
|v 118
|y 2016
|x 1095-8290
856 4 _ |u https://juser.fz-juelich.de/record/817807/files/Ann%20Bot-2016-Dathe-401-14.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/817807/files/Ann%20Bot-2016-Dathe-401-14.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/817807/files/Ann%20Bot-2016-Dathe-401-14.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/817807/files/Ann%20Bot-2016-Dathe-401-14.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/817807/files/Ann%20Bot-2016-Dathe-401-14.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/817807/files/Ann%20Bot-2016-Dathe-401-14.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:817807
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144879
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN BOT-LONDON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21