000817851 001__ 817851
000817851 005__ 20210129224034.0
000817851 0247_ $$2doi$$a10.12694/scpe.v17i2.1160
000817851 0247_ $$2Handle$$a2128/12206
000817851 0247_ $$2WOS$$aWOS:000377906100006
000817851 037__ $$aFZJ-2016-04468
000817851 041__ $$aEnglish
000817851 082__ $$a004
000817851 1001_ $$0P:(DE-Juel1)132190$$aMemon, Mohammad Shahbaz$$b0$$eCorresponding author$$ufzj
000817851 245__ $$aEnabling Scalable Data Processing and Management through Standards-based Job Execution and the Global Federated File System
000817851 260__ $$c2016
000817851 3367_ $$2DRIVER$$aarticle
000817851 3367_ $$2DataCite$$aOutput Types/Journal article
000817851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472031839_26302
000817851 3367_ $$2BibTeX$$aARTICLE
000817851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817851 3367_ $$00$$2EndNote$$aJournal Article
000817851 520__ $$aEmerging challenges for scientific communities are to efficiently process big data obtained by experimentation and computational simulations. Supercomputing architectures are available to support scalable and high performant processing environment, but many of the existing algorithm implementations are still unable to cope with its architectural complexity. One approach is to have innovative technologies that effectively use these resources and also deal with geographically dispersed large datasets. Those technologies should be accessible in a way that data scientists who are running data intensive computations do not have to deal with technical intricacies of the underling execution system. Our work primarily focuses on providing data scientists with transparent access to these resources in order to easily analyze data. Impact of our work is given by describing how we enabled access to multiple high performance computing resources through an open standards-based middleware that takes advantage of a unified data management provided by the the Global Federated File System. Our architectural design and its associated implementation is validated by a usecase that requires massivley parallel DBSCAN outlier detection on a 3D point clouds dataset.
000817851 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000817851 588__ $$aDataset connected to CrossRef
000817851 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1$$eCorresponding author$$ufzj
000817851 7001_ $$0P:(DE-Juel1)132191$$aMemon, Ahmed$$b2$$ufzj
000817851 7001_ $$0P:(DE-HGF)0$$aKoeritz, Chris$$b3
000817851 7001_ $$0P:(DE-HGF)0$$aGrimshaw, Andrew$$b4
000817851 7001_ $$0P:(DE-Juel1)169980$$aNeukirchen, Helmut$$b5$$ufzj
000817851 773__ $$0PERI:(DE-600)2240223-8$$a10.12694/scpe.v17i2.1160$$gVol. 17, no. 2, p. 115-128$$n2$$p115-128$$tScalable computing$$v17$$x1895-1767$$y2016
000817851 8564_ $$uhttps://juser.fz-juelich.de/record/817851/files/1160-1099-1-PB.pdf$$yOpenAccess
000817851 8564_ $$uhttps://juser.fz-juelich.de/record/817851/files/1160-1099-1-PB.gif?subformat=icon$$xicon$$yOpenAccess
000817851 8564_ $$uhttps://juser.fz-juelich.de/record/817851/files/1160-1099-1-PB.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817851 8564_ $$uhttps://juser.fz-juelich.de/record/817851/files/1160-1099-1-PB.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817851 8564_ $$uhttps://juser.fz-juelich.de/record/817851/files/1160-1099-1-PB.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817851 8564_ $$uhttps://juser.fz-juelich.de/record/817851/files/1160-1099-1-PB.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817851 909CO $$ooai:juser.fz-juelich.de:817851$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000817851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132190$$aForschungszentrum Jülich$$b0$$kFZJ
000817851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b1$$kFZJ
000817851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132191$$aForschungszentrum Jülich$$b2$$kFZJ
000817851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169980$$aForschungszentrum Jülich$$b5$$kFZJ
000817851 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000817851 9141_ $$y2016
000817851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817851 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000817851 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817851 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817851 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817851 920__ $$lyes
000817851 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000817851 980__ $$ajournal
000817851 980__ $$aVDB
000817851 980__ $$aUNRESTRICTED
000817851 980__ $$aI:(DE-Juel1)JSC-20090406
000817851 9801_ $$aFullTexts