000817878 001__ 817878
000817878 005__ 20210129224037.0
000817878 0247_ $$2doi$$a10.1093/jxb/erv570
000817878 0247_ $$2ISSN$$a0022-0957
000817878 0247_ $$2ISSN$$a1460-2431
000817878 0247_ $$2Handle$$a2128/12210
000817878 0247_ $$2WOS$$aWOS:000371020400005
000817878 0247_ $$2altmetric$$aaltmetric:5059564
000817878 0247_ $$2pmid$$apmid:26826219
000817878 037__ $$aFZJ-2016-04484
000817878 041__ $$aEnglish
000817878 082__ $$a580
000817878 1001_ $$0P:(DE-HGF)0$$aWasson, Anton$$b0$$eCorresponding author
000817878 245__ $$aA portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field
000817878 260__ $$aOxford$$bOxford Univ. Press$$c2016
000817878 3367_ $$2DRIVER$$aarticle
000817878 3367_ $$2DataCite$$aOutput Types/Journal article
000817878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472211837_1024
000817878 3367_ $$2BibTeX$$aARTICLE
000817878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817878 3367_ $$00$$2EndNote$$aJournal Article
000817878 520__ $$aRoot architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. 
000817878 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000817878 588__ $$aDataset connected to CrossRef
000817878 7001_ $$0P:(DE-HGF)0$$aBischof, Leanne$$b1
000817878 7001_ $$0P:(DE-HGF)0$$aZwart, Alec$$b2
000817878 7001_ $$0P:(DE-Juel1)166460$$aWatt, Michelle$$b3$$ufzj
000817878 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erv570$$gVol. 67, no. 4, p. 1033 - 1043$$n4$$p1033 - 1043$$tThe journal of experimental botany$$v67$$x1460-2431$$y2016
000817878 8564_ $$uhttps://juser.fz-juelich.de/record/817878/files/J.%20Exp.%20Bot.-2016-Wasson-1033-43.pdf$$yOpenAccess
000817878 8564_ $$uhttps://juser.fz-juelich.de/record/817878/files/J.%20Exp.%20Bot.-2016-Wasson-1033-43.gif?subformat=icon$$xicon$$yOpenAccess
000817878 8564_ $$uhttps://juser.fz-juelich.de/record/817878/files/J.%20Exp.%20Bot.-2016-Wasson-1033-43.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817878 8564_ $$uhttps://juser.fz-juelich.de/record/817878/files/J.%20Exp.%20Bot.-2016-Wasson-1033-43.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817878 8564_ $$uhttps://juser.fz-juelich.de/record/817878/files/J.%20Exp.%20Bot.-2016-Wasson-1033-43.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817878 8564_ $$uhttps://juser.fz-juelich.de/record/817878/files/J.%20Exp.%20Bot.-2016-Wasson-1033-43.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817878 909CO $$ooai:juser.fz-juelich.de:817878$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000817878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166460$$aForschungszentrum Jülich$$b3$$kFZJ
000817878 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000817878 9141_ $$y2016
000817878 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000817878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817878 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000817878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000817878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2015
000817878 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2015
000817878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817878 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000817878 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817878 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000817878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000817878 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000817878 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000817878 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000817878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817878 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000817878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817878 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000817878 980__ $$ajournal
000817878 980__ $$aVDB
000817878 980__ $$aUNRESTRICTED
000817878 980__ $$aI:(DE-Juel1)IBG-2-20101118
000817878 9801_ $$aFullTexts