000817881 001__ 817881
000817881 005__ 20240708132841.0
000817881 037__ $$aFZJ-2016-04487
000817881 041__ $$aEnglish
000817881 1001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b0$$eCorresponding author$$ufzj
000817881 1112_ $$aThe 15th European Powder Diffraction Conference$$cBari$$d2016-06-12 - 2016-06-15$$wItaly
000817881 245__ $$aNeutron powder diffraction study of high Li-ion conductive Li7-xAlxLa3Zr2O12
000817881 260__ $$c2016
000817881 3367_ $$033$$2EndNote$$aConference Paper
000817881 3367_ $$2DataCite$$aOther
000817881 3367_ $$2BibTeX$$aINPROCEEDINGS
000817881 3367_ $$2DRIVER$$aconferenceObject
000817881 3367_ $$2ORCID$$aLECTURE_SPEECH
000817881 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1472729801_15960$$xOther
000817881 520__ $$aThe garnet-type lithium oxides with the general formula Li7La3Zr2O12 (LLZ) are promising candidates for all-solid-state lithium batteries due to their high ionic conductivity and electrochemical stability. The tetragonal LLZ crystallizes in the space group I41/acd at room temperature and exhibits a relatively low total Li-ionic conductivity of ≈ 10-6 Scm-1 [1], whereas the high-temperature cubic phase with the space group Ia-3d gives an elevated total ionic conductivity of ≈ 10-4 Scm-1 [2]. Li-occupancy in the crystal structure plays a significant role in the conduction, since Li-ion jump can take place through the energetically favorable atom positions that are only partially occupied [3, 4]. The presence of vacancies in LLZ lowers the activation energy and enhances Li-ionic conductivity. 20 mol % aluminum-doped LLZ was synthesized by solid state reaction to stabilize the crystal structure, and hence to improve the total ionic conductivity by increasing the number of vacancies. The X-ray powder diffraction analysis shows a mixture of tetragonal and cubic Al-doped LLZ with the weight fraction ratio of almost 1:1. The impedance measurement on this mixture compound revealed a high total ionic conductivity of ≈ 10-4 Scm-1, despite of the presence of the poorly conducting tetragonal phase. To elucidate this phenomenon, neutron powder diffraction was performed on the mixed phase Al-doped LLZ as well as on the pure tetragonal one. Rietveld analysis was carried out to obtain detailed crystal structure information, and a possible mechanism of the Li-ion conduction was discussed according to its crystal structure. [1] Awaka J., Kijima N., Hayakawa H., Akimoto J. J. Solid State Chem. 2009, 182, 2046. [2] Murugan R., Thangadurai V., Weppner W. Angew. Chem. Int. Ed. 2007, 46, 7778.[3] Li Y., Han J., Wang C., Vogel S., Xie H., Xu M., Goodenough J. J. Power Sources 2012, 209, 278.[4] Meier K., Laino T., Curioni A. J. Phys. Chem. C. 2014, 118, 6668Keywords: neutron powder diffraction, crystal structure, Li-ionic conductivity
000817881 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000817881 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000817881 7001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b1$$ufzj
000817881 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2$$ufzj
000817881 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3$$ufzj
000817881 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000817881 909CO $$ooai:juser.fz-juelich.de:817881$$pVDB
000817881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b0$$kFZJ
000817881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich$$b1$$kFZJ
000817881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b2$$kFZJ
000817881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b3$$kFZJ
000817881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000817881 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000817881 9141_ $$y2016
000817881 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000817881 920__ $$lyes
000817881 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000817881 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000817881 980__ $$aconf
000817881 980__ $$aVDB
000817881 980__ $$aUNRESTRICTED
000817881 980__ $$aI:(DE-Juel1)IEK-1-20101013
000817881 980__ $$aI:(DE-82)080011_20140620
000817881 981__ $$aI:(DE-Juel1)IMD-2-20101013