| Hauptseite > Publikationsdatenbank > Neutron powder diffraction study of high Li-ion conductive Li7-xAlxLa3Zr2O12 > print |
| 001 | 817881 | ||
| 005 | 20240708132841.0 | ||
| 037 | _ | _ | |a FZJ-2016-04487 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Sohn, Yoo Jung |0 P:(DE-Juel1)159368 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a The 15th European Powder Diffraction Conference |c Bari |d 2016-06-12 - 2016-06-15 |w Italy |
| 245 | _ | _ | |a Neutron powder diffraction study of high Li-ion conductive Li7-xAlxLa3Zr2O12 |
| 260 | _ | _ | |c 2016 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1472729801_15960 |2 PUB:(DE-HGF) |x Other |
| 520 | _ | _ | |a The garnet-type lithium oxides with the general formula Li7La3Zr2O12 (LLZ) are promising candidates for all-solid-state lithium batteries due to their high ionic conductivity and electrochemical stability. The tetragonal LLZ crystallizes in the space group I41/acd at room temperature and exhibits a relatively low total Li-ionic conductivity of ≈ 10-6 Scm-1 [1], whereas the high-temperature cubic phase with the space group Ia-3d gives an elevated total ionic conductivity of ≈ 10-4 Scm-1 [2]. Li-occupancy in the crystal structure plays a significant role in the conduction, since Li-ion jump can take place through the energetically favorable atom positions that are only partially occupied [3, 4]. The presence of vacancies in LLZ lowers the activation energy and enhances Li-ionic conductivity. 20 mol % aluminum-doped LLZ was synthesized by solid state reaction to stabilize the crystal structure, and hence to improve the total ionic conductivity by increasing the number of vacancies. The X-ray powder diffraction analysis shows a mixture of tetragonal and cubic Al-doped LLZ with the weight fraction ratio of almost 1:1. The impedance measurement on this mixture compound revealed a high total ionic conductivity of ≈ 10-4 Scm-1, despite of the presence of the poorly conducting tetragonal phase. To elucidate this phenomenon, neutron powder diffraction was performed on the mixed phase Al-doped LLZ as well as on the pure tetragonal one. Rietveld analysis was carried out to obtain detailed crystal structure information, and a possible mechanism of the Li-ion conduction was discussed according to its crystal structure. [1] Awaka J., Kijima N., Hayakawa H., Akimoto J. J. Solid State Chem. 2009, 182, 2046. [2] Murugan R., Thangadurai V., Weppner W. Angew. Chem. Int. Ed. 2007, 46, 7778.[3] Li Y., Han J., Wang C., Vogel S., Xie H., Xu M., Goodenough J. J. Power Sources 2012, 209, 278.[4] Meier K., Laino T., Curioni A. J. Phys. Chem. C. 2014, 118, 6668Keywords: neutron powder diffraction, crystal structure, Li-ionic conductivity |
| 536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
| 536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
| 700 | 1 | _ | |a Reppert, Thorsten |0 P:(DE-Juel1)159367 |b 1 |u fzj |
| 700 | 1 | _ | |a Sebold, Doris |0 P:(DE-Juel1)129662 |b 2 |u fzj |
| 700 | 1 | _ | |a Finsterbusch, Martin |0 P:(DE-Juel1)145623 |b 3 |u fzj |
| 700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 4 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:817881 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)159368 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159367 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129662 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)145623 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161591 |
| 913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 1 |
| 980 | _ | _ | |a conf |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a I:(DE-82)080011_20140620 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|