001     817881
005     20240708132841.0
037 _ _ |a FZJ-2016-04487
041 _ _ |a English
100 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 0
|e Corresponding author
|u fzj
111 2 _ |a The 15th European Powder Diffraction Conference
|c Bari
|d 2016-06-12 - 2016-06-15
|w Italy
245 _ _ |a Neutron powder diffraction study of high Li-ion conductive Li7-xAlxLa3Zr2O12
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1472729801_15960
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a The garnet-type lithium oxides with the general formula Li7La3Zr2O12 (LLZ) are promising candidates for all-solid-state lithium batteries due to their high ionic conductivity and electrochemical stability. The tetragonal LLZ crystallizes in the space group I41/acd at room temperature and exhibits a relatively low total Li-ionic conductivity of ≈ 10-6 Scm-1 [1], whereas the high-temperature cubic phase with the space group Ia-3d gives an elevated total ionic conductivity of ≈ 10-4 Scm-1 [2]. Li-occupancy in the crystal structure plays a significant role in the conduction, since Li-ion jump can take place through the energetically favorable atom positions that are only partially occupied [3, 4]. The presence of vacancies in LLZ lowers the activation energy and enhances Li-ionic conductivity. 20 mol % aluminum-doped LLZ was synthesized by solid state reaction to stabilize the crystal structure, and hence to improve the total ionic conductivity by increasing the number of vacancies. The X-ray powder diffraction analysis shows a mixture of tetragonal and cubic Al-doped LLZ with the weight fraction ratio of almost 1:1. The impedance measurement on this mixture compound revealed a high total ionic conductivity of ≈ 10-4 Scm-1, despite of the presence of the poorly conducting tetragonal phase. To elucidate this phenomenon, neutron powder diffraction was performed on the mixed phase Al-doped LLZ as well as on the pure tetragonal one. Rietveld analysis was carried out to obtain detailed crystal structure information, and a possible mechanism of the Li-ion conduction was discussed according to its crystal structure. [1] Awaka J., Kijima N., Hayakawa H., Akimoto J. J. Solid State Chem. 2009, 182, 2046. [2] Murugan R., Thangadurai V., Weppner W. Angew. Chem. Int. Ed. 2007, 46, 7778.[3] Li Y., Han J., Wang C., Vogel S., Xie H., Xu M., Goodenough J. J. Power Sources 2012, 209, 278.[4] Meier K., Laino T., Curioni A. J. Phys. Chem. C. 2014, 118, 6668Keywords: neutron powder diffraction, crystal structure, Li-ionic conductivity
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Reppert, Thorsten
|0 P:(DE-Juel1)159367
|b 1
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 2
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:817881
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21