000817901 001__ 817901
000817901 005__ 20230426083136.0
000817901 0247_ $$2doi$$a10.1103/PhysRevB.94.075149
000817901 0247_ $$2ISSN$$a0163-1829
000817901 0247_ $$2ISSN$$a0556-2805
000817901 0247_ $$2ISSN$$a1094-1622
000817901 0247_ $$2ISSN$$a1095-3795
000817901 0247_ $$2ISSN$$a1098-0121
000817901 0247_ $$2ISSN$$a1550-235X
000817901 0247_ $$2ISSN$$a2469-9950
000817901 0247_ $$2ISSN$$a2469-9969
000817901 0247_ $$2Handle$$a2128/12239
000817901 0247_ $$2WOS$$aWOS:000381889500001
000817901 0247_ $$2altmetric$$aaltmetric:6354785
000817901 037__ $$aFZJ-2016-04499
000817901 082__ $$a530
000817901 1001_ $$0P:(DE-HGF)0$$aYue, Sheng-Ying$$b0
000817901 245__ $$aMethodology for determining the electronic thermal conductivity of metals via direct nonequilibrium ab initio molecular dynamics
000817901 260__ $$aWoodbury, NY$$bInst.$$c2016
000817901 3367_ $$2DRIVER$$aarticle
000817901 3367_ $$2DataCite$$aOutput Types/Journal article
000817901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472730385_15965
000817901 3367_ $$2BibTeX$$aARTICLE
000817901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817901 3367_ $$00$$2EndNote$$aJournal Article
000817901 520__ $$aMany physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential of the ion cores. Based on this premise, we develop a methodology for evaluating electronic thermal conductivity of metals by combining the free electron model and nonequilibrium ab initio molecular dynamics simulations. We confirm that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation, which is induced by the thermal motion of ion cores. This method directly predicts the electronic thermal conductivity of pure metals with a high degree of accuracy, without explicitly addressing any complicated scattering processes of free electrons. Our methodology offers a route to understand the physics of heat transfer by electrons at the atomistic level. The methodology can be further extended to the study of similar electron-involved problems in materials, such as electron-phonon coupling, which is underway currently.
000817901 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000817901 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000817901 542__ $$2Crossref$$i2016-08-25$$uhttp://link.aps.org/licenses/aps-default-license
000817901 588__ $$aDataset connected to CrossRef
000817901 7001_ $$0P:(DE-HGF)0$$aZhang, Xiaoliang$$b1
000817901 7001_ $$0P:(DE-HGF)0$$aStackhouse, Stephen$$b2
000817901 7001_ $$0P:(DE-HGF)0$$aQin, Guangzhao$$b3
000817901 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b4
000817901 7001_ $$0P:(DE-HGF)0$$aHu, Ming$$b5$$eCorresponding author
000817901 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.94.075149$$bAmerican Physical Society (APS)$$d2016-08-25$$n7$$p075149$$tPhysical Review B$$v94$$x2469-9950$$y2016
000817901 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.94.075149$$gVol. 94, no. 7, p. 075149$$n7$$p075149$$tPhysical review / B$$v94$$x2469-9950$$y2016
000817901 8564_ $$uhttps://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.pdf$$yOpenAccess
000817901 8564_ $$uhttps://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.gif?subformat=icon$$xicon$$yOpenAccess
000817901 8564_ $$uhttps://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817901 8564_ $$uhttps://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817901 8564_ $$uhttps://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817901 8564_ $$uhttps://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817901 909CO $$ooai:juser.fz-juelich.de:817901$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000817901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b4$$kFZJ
000817901 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000817901 9141_ $$y2016
000817901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000817901 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000817901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000817901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817901 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817901 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000817901 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000817901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817901 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000817901 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000817901 980__ $$ajournal
000817901 980__ $$aVDB
000817901 980__ $$aUNRESTRICTED
000817901 980__ $$aI:(DE-Juel1)JSC-20090406
000817901 980__ $$aI:(DE-82)080012_20140620
000817901 9801_ $$aFullTexts
000817901 999C5 $$1C. Kittel$$2Crossref$$oC. Kittel Introduction to Solid States Physics 2005$$tIntroduction to Solid States Physics$$y2005
000817901 999C5 $$1W. Jones$$2Crossref$$oW. Jones Theoretical Solid State Physics 1985$$tTheoretical Solid State Physics$$y1985
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2006.03.007
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.045134
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.66.025401
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature11031
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1111841109
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.208501
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4869669
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0927-0256(96)00008-0
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.473271
000817901 999C5 $$1W. R. Dennis$$2Crossref$$oW. R. Dennis Echo Signal Processing 2003$$tEcho Signal Processing$$y2003
000817901 999C5 $$1H. V. Storch$$2Crossref$$oH. V. Storch Statistical Analysis in Climate Research 2001$$tStatistical Analysis in Climate Research$$y2001
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp405156y
000817901 999C5 $$1J. R. Taylor$$2Crossref$$oJ. R. Taylor An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements 1997$$tAn Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements$$y1997
000817901 999C5 $$1H. H. Ku$$2Crossref$$oH. H. Ku 1966$$y1966
000817901 999C5 $$1L. D. Landau$$2Crossref$$oL. D. Landau Statistical Physics 1980$$tStatistical Physics$$y1980
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2822891
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.085206
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2014.02.015
000817901 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.2230