Home > Publications database > Methodology for determining the electronic thermal conductivity of metals via direct nonequilibrium ab initio molecular dynamics > print |
001 | 817901 | ||
005 | 20230426083136.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.94.075149 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/12239 |2 Handle |
024 | 7 | _ | |a WOS:000381889500001 |2 WOS |
024 | 7 | _ | |a altmetric:6354785 |2 altmetric |
037 | _ | _ | |a FZJ-2016-04499 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Yue, Sheng-Ying |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Methodology for determining the electronic thermal conductivity of metals via direct nonequilibrium ab initio molecular dynamics |
260 | _ | _ | |a Woodbury, NY |c 2016 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1472730385_15965 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Many physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential of the ion cores. Based on this premise, we develop a methodology for evaluating electronic thermal conductivity of metals by combining the free electron model and nonequilibrium ab initio molecular dynamics simulations. We confirm that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation, which is induced by the thermal motion of ion cores. This method directly predicts the electronic thermal conductivity of pure metals with a high degree of accuracy, without explicitly addressing any complicated scattering processes of free electrons. Our methodology offers a route to understand the physics of heat transfer by electrons at the atomistic level. The methodology can be further extended to the study of similar electron-involved problems in materials, such as electron-phonon coupling, which is underway currently. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 2 |
542 | _ | _ | |i 2016-08-25 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Zhang, Xiaoliang |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Stackhouse, Stephen |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Qin, Guangzhao |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Di Napoli, Edoardo |0 P:(DE-Juel1)144723 |b 4 |
700 | 1 | _ | |a Hu, Ming |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | 1 | 8 | |a 10.1103/physrevb.94.075149 |b American Physical Society (APS) |d 2016-08-25 |n 7 |p 075149 |3 journal-article |2 Crossref |t Physical Review B |v 94 |y 2016 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.94.075149 |g Vol. 94, no. 7, p. 075149 |0 PERI:(DE-600)2844160-6 |n 7 |p 075149 |t Physical review / B |v 94 |y 2016 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:817901 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144723 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |1 C. Kittel |y 2005 |2 Crossref |t Introduction to Solid States Physics |o C. Kittel Introduction to Solid States Physics 2005 |
999 | C | 5 | |1 W. Jones |y 1985 |2 Crossref |t Theoretical Solid State Physics |o W. Jones Theoretical Solid State Physics 1985 |
999 | C | 5 | |a 10.1016/j.cpc.2006.03.007 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.88.045134 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.66.025401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature11031 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1073/pnas.1111841109 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.104.208501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.4869669 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.54.11169 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0927-0256(96)00008-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.473271 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 W. R. Dennis |y 2003 |2 Crossref |t Echo Signal Processing |o W. R. Dennis Echo Signal Processing 2003 |
999 | C | 5 | |1 H. V. Storch |y 2001 |2 Crossref |t Statistical Analysis in Climate Research |o H. V. Storch Statistical Analysis in Climate Research 2001 |
999 | C | 5 | |a 10.1021/jp405156y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. R. Taylor |y 1997 |2 Crossref |t An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements |o J. R. Taylor An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements 1997 |
999 | C | 5 | |1 H. H. Ku |y 1966 |2 Crossref |o H. H. Ku 1966 |
999 | C | 5 | |1 L. D. Landau |y 1980 |2 Crossref |t Statistical Physics |o L. D. Landau Statistical Physics 1980 |
999 | C | 5 | |a 10.1063/1.2822891 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.89.085206 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.cpc.2014.02.015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.83.2230 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|