001     817901
005     20230426083136.0
024 7 _ |a 10.1103/PhysRevB.94.075149
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/12239
|2 Handle
024 7 _ |a WOS:000381889500001
|2 WOS
024 7 _ |a altmetric:6354785
|2 altmetric
037 _ _ |a FZJ-2016-04499
082 _ _ |a 530
100 1 _ |a Yue, Sheng-Ying
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Methodology for determining the electronic thermal conductivity of metals via direct nonequilibrium ab initio molecular dynamics
260 _ _ |a Woodbury, NY
|c 2016
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1472730385_15965
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential of the ion cores. Based on this premise, we develop a methodology for evaluating electronic thermal conductivity of metals by combining the free electron model and nonequilibrium ab initio molecular dynamics simulations. We confirm that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation, which is induced by the thermal motion of ion cores. This method directly predicts the electronic thermal conductivity of pure metals with a high degree of accuracy, without explicitly addressing any complicated scattering processes of free electrons. Our methodology offers a route to understand the physics of heat transfer by electrons at the atomistic level. The methodology can be further extended to the study of similar electron-involved problems in materials, such as electron-phonon coupling, which is underway currently.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
542 _ _ |i 2016-08-25
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Xiaoliang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stackhouse, Stephen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Qin, Guangzhao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Di Napoli, Edoardo
|0 P:(DE-Juel1)144723
|b 4
700 1 _ |a Hu, Ming
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 1 8 |a 10.1103/physrevb.94.075149
|b American Physical Society (APS)
|d 2016-08-25
|n 7
|p 075149
|3 journal-article
|2 Crossref
|t Physical Review B
|v 94
|y 2016
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.94.075149
|g Vol. 94, no. 7, p. 075149
|0 PERI:(DE-600)2844160-6
|n 7
|p 075149
|t Physical review / B
|v 94
|y 2016
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/817901/files/PhysRevB.94.075149.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:817901
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144723
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts
999 C 5 |1 C. Kittel
|y 2005
|2 Crossref
|t Introduction to Solid States Physics
|o C. Kittel Introduction to Solid States Physics 2005
999 C 5 |1 W. Jones
|y 1985
|2 Crossref
|t Theoretical Solid State Physics
|o W. Jones Theoretical Solid State Physics 1985
999 C 5 |a 10.1016/j.cpc.2006.03.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.045134
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.66.025401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature11031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1111841109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.208501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4869669
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.11169
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0927-0256(96)00008-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.473271
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 W. R. Dennis
|y 2003
|2 Crossref
|t Echo Signal Processing
|o W. R. Dennis Echo Signal Processing 2003
999 C 5 |1 H. V. Storch
|y 2001
|2 Crossref
|t Statistical Analysis in Climate Research
|o H. V. Storch Statistical Analysis in Climate Research 2001
999 C 5 |a 10.1021/jp405156y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. R. Taylor
|y 1997
|2 Crossref
|t An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
|o J. R. Taylor An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements 1997
999 C 5 |1 H. H. Ku
|y 1966
|2 Crossref
|o H. H. Ku 1966
999 C 5 |1 L. D. Landau
|y 1980
|2 Crossref
|t Statistical Physics
|o L. D. Landau Statistical Physics 1980
999 C 5 |a 10.1063/1.2822891
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.085206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2014.02.015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.83.2230
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21