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Many physical properties of metals can be understood in terms of the free electron model, as proven by

the Wiedemann-Franz law. According to this model, electronic thermal conductivity can be inferred from the

Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such

as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how

this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect

the electrostatic potential of the ion cores. Based on this premise, we develop a methodology for evaluating

electronic thermal conductivity of metals by combining the free electron model and nonequilibrium ab initio

molecular dynamics simulations. We confirm that the kinetic energy of thermally excited electrons originates

from the energy of the spatial electrostatic potential oscillation, which is induced by the thermal motion of ion

cores. This method directly predicts the electronic thermal conductivity of pure metals with a high degree of

accuracy, without explicitly addressing any complicated scattering processes of free electrons. Our methodology

offers a route to understand the physics of heat transfer by electrons at the atomistic level. The methodology

can be further extended to the study of similar electron-involved problems in materials, such as electron-phonon

coupling, which is underway currently.

DOI: 10.1103/PhysRevB.94.075149

I. INTRODUCTION

The electronic thermal conductivity (κel) is one of the

most important physical properties of metals. The analytical

solution of κel based on the Boltzmann transport equation

(BTE) and free electron model can be expressed as [1,2]

κel =
π2nk2

BT τel

3m
, (1)

where n is the concentration of free electrons, m is the

electron mass, kB is the Boltzmann constant, T is the system

temperature, and τel is the collision time of free electrons,

which is mainly determined by electron-electron, electron-

hole, and electron-phonon scattering. In principle, we can

obtain an approximate value for τel from Matthiessen’s rule.

However, describing every scattering process involved in the

heat transfer by electrons of solid metals is too complicated.

Recently, there have been a number of studies of the κel of

solid metals, based on BTE methodology [3,4]. However, it

is well known that the BTE of electrons is based on a single

relaxation-time approximation which may not hold true for all

metals. In addition, several methods have been used to evaluate

the κel of liquid-phase metals within the framework of density

functional theory (DFT), such as ab initio molecular dynamics

(AIMD), using the Kubo-Greenwood equation [5–7]. In view

of this, there remains a need for an effective method to evaluate

κel of solid metals.

In this paper, we develop a methodology to describe

the electronic heat-transport process in solid metals without
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explicitly addressing detailed scattering processes. From the

second law of thermodynamics, we know that heat transfer in

solids is driven by the temperature gradient ∇T . It should be

noted that the temperature in heat transfer describes the thermal

motion of atoms, i.e., the kinetic energy of nuclei. In the

meantime, the vibrations of ions can lead to spatial electrostatic

potential oscillation (EPO), as can be easily deduced from

the mathematical expression for the total Hamiltonian of

system. It easily follows that the local variation of the

electrostatic potential can induce the collective oscillations

of free electrons, and those free electrons near the Fermi

surface can be excited above the Fermi surface and obtain

additional thermal kinetic energy with respect to 0 K. These are

called thermally excited electrons. Figures 1(a) and 1(b) show

two cartoons describing how the thermally excited electrons

move in the vibrational lattice and the local EP field. Higher

temperatures, which induce larger and faster ionic vibrations,

lead to stronger EPO. Thus, the thermally excited electrons

in high-temperature regions have more kinetic energy than

those in low-temperature regions. Once a stable distribution

of the thermal kinetic energy of thermally excited electrons is

established along the direction of ∇T , then the heat flux carried

by thermally excited electrons and κel can be calculated.

II. THEORY AND EVIDENCE

To confirm this conjecture and quantify κel , we performed

nonequilibrium ab initio molecular dynamics (NEAIMD)

simulations [8,9] by modifying the Vienna Ab initio Simulation

Package (VASP) [10,11]. The atomic heat flux was realized

using the Müller-Plathe algorithm [12], in which the kinetic
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FIG. 1. Cartoons of free electrons in a metal moving in (a) the

vibrating lattice and (b) electrostatic potential field.

energies of the atoms in the heat source and heat sink are

exchanged (Supplemental Material [23], Sec. 1). With suffi-

cient simulation time, we can establish a stable temperature

gradient in metals. Figures 2(a) and 2(b) present the Cu

model and the corresponding temperature profile, respectively.

Simultaneously, we can calculate the spatial distribution and

the dynamical evolution of the EP, which is expressed as

U =

∫

U (r)ρtest(|r − R|)d3r, (2)

where the test charge ρtest is the norm 1, and R represents the

ion position. Figure 2(c) shows the theoretical results of the

static distribution of the EP for a perfect Cu lattice. In the rest of

FIG. 2. Overview of the simulation model, temperature profile,

and EP field of copper. (a) Model of copper used in NEAIMD

simulations and (b) the corresponding temperature profile. One unit

cell length comprises two layers of atoms. We use fixed boundary

conditions with the layers of fixed atoms and vacuum layers along

the direction of ∇T . Periodic boundary conditions are adopted in the

other two dimensions. (c) Theoretical EP field of a perfect copper

structure (the test charge number is norm 1).

this paper, we confirm the relationship between the spatial EPO

and lattice vibrations, and that the EPO provides additional

kinetic energy to thermally excited electrons. Following this,

we show how to predict κel within our theoretical framework.

To demonstrate the relationship between EPO and lattice

vibrations, we analyze the data from our AIMD simulations

using the power spectral density (PSD) method [13,14]. For a

stationary signal x(t), the PSD is defined as

Sx(f ) =

∫ ∞

−∞

Rx(τ )e−2πif τdτ, (3)

where Rx(τ ) = E[x(t)x(t + τ )] is the autocorrelation function

of x(t) [13,14], and E[· · · ] denotes the expectation value.

Here, we consider four signals from an AIMD simulation:

atomic displacement Dion, atomic velocity Vion, EP displace-

ment Uion, and velocity of EPO (VEPO) �Uion; these are used

to calculate their respective spectral densities SD , SV [15],

SU , S�U (Supplemental Material [23], Sec. 2). SD and SV

reflect the frequency-dependent lattice vibrations at a specific

T . Analogously, SU and S�U provide information regarding

the EPO with respect to frequency. We show results for Al

from a 10-ps equilibrium AIMD run at 100.90 K [Figs. 3(a)

and 3(b)] and a 70-ps NEAIMD simulation at 299.46 K

[Figs. 3(c) and 3(d)]. Figure 3(a) clearly shows that the

locations of the density peaks of SD and SU are consistent,

demonstrating that the EPO is mainly caused by the lattice

vibration of ion cores. Figure 3(b) confirms this relationship.

Similar results are shown in Figs. 3(c) and 3(d): for most of

the frequency ranges, the peaks of SD and SU , SV and S�U

are consistent with each other. However, for some specific

frequencies in Figs. 3(c) and 3(d) (3.5 ∼ 5.0 THz), some

FIG. 3. Overview of the relationship between EPO at ion cores

and lattice vibrations. Blue and red lines represent the spectral density

of (a) atom displacements (SD) and (c) the EP displacement (SU ),

respectively, at specific ion cores. Green and orange lines represent

the spectral density of (b) atom velocities (SV ) and (d) the EPO

velocities (S�U ), respectively, at specific ion cores. Data in (a)

and (b) are from a 10-ps equilibrium AIMD simulation of Al at

100.90 K, whereas (c) and (d) present the same physical quantities

from a 70-ps NEAIMD simulation of Al at 299.46 K.
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FIG. 4. (a) The variation of EPO in space over time (the test

charge number is 1). Data shown are from a 20-ps NEAIMD

simulation of Cu at 298.49 K. (b) Schematic of the whole Fermi

sphere oscillation as local electric field vibration along the �z direction.

discrepancies exist in the peaks’ magnitudes. It is possible that

this phenomenon could be due to the heat flux applied in the

NEAIMD simulations. Nevertheless, Figs. 3(a)–3(d) provide

an unambiguous physical picture of the EPO being directly

induced by the lattice vibration of ions in metals.

To understand the dynamical evolution of spatial EPO

intuitively, we present the representative case of Cu, calculated

using NEAIMD at 298.49 K, in Fig. 4(a). Little variation

occurs in the local electronic field between neighboring atom

layers, and the directions of these local fields continually

change with time. The variations of these local fields will

drive the collective vibration of free electrons, as theoretically

illustrated in Fig. 4(b). We see that only free electrons near the

Fermi surface can be thermally excited. Because the direction

of the local field continually changes with time, the vectors of

the local momentum of the thermally excited electrons should

also continually change with time. Therefore, for a sufficiently

long statistical time average, no net electric current should

arise during the thermal transport process of metals. This is

consistent with the traditional free electron model [1].

To confirm that the EPO provides additional kinetic energy

to thermally excited electrons in metals, we run a 100-ps

equilibrium AIMD for Al at 329.40 K and Li at 283.97 K

(both with a 2×2×2 conventional cell and 32 total atoms).

When T > 0 K, the total energy of the free electron system

can be written as [1,2] (Supplemental Material [23], Sec. 3)

Esys = E0 + ET = E0 +
π2

4
N

(kBT )2

E0
F

,

where E0 is the total energy of the free electron system at

0 K, ET is the thermally excited energy of the free electron

system obtained from the outside environment when T > 0 K,

N is the total number of free electrons, and E0
F is the Fermi

energy at 0 K. Because the Fermi energy changes very little

with temperature, here, we take the EF at room temperature

as E0
F and adopt the experimental data [1]. We also calculate

the energy provided by EPO using

EEPO = 2 UEPO N e,

where UEPO is the average effective EPO amplitude. For Al,

ET = 2.6293×10−21 J and EEPO = 2.7674×10−21 J. For Li,

ET = 1.6049×10−21 J and EEPO = 1.5909×10−21 J. Based

on these results, it is evident that

ET ≈ EEPO. (4)

This relation, although not a strict theoretical derivation,

confirms that lattice vibrations cause EPO in metals, which, in

turn, induces the collective vibration of free electrons. In fact,

the energy of these collective vibrations provides additional

kinetic energy to the thermally excited electrons. This is the

core concept underlying this methodology.

III. METHOD AND RESULTS

Within this theoretical framework, higher temperatures

strengthen the spatial EPO. To confirm this relationship, we

perform direct fast Fourier transform (FFT) of the relative

displacement of EP Uion and VEPO �Uion. Uion and �Uion

were used to calculate SU and S�U in Figs. 3(a)–3(d). Uion

describes the strength of the EPO in space, whereas �Uion

reflects how fast the oscillation changes. Figures 5(a) and 5(b)

show the frequency-dependent FFT amplitudes of Uion and

�Uion, respectively. Clearly, the EPO is stronger and faster at

higher temperatures.

In Fig. 6(a), we present the positive and negative integra-

tions of the total �Uion in the same atom layer with simulation

time, which can be written as
∑Nal

j=1

∑

t �Uj (t), where j is the

index of the atom in the layer and Nal is the total number of

atoms per layer. The four quantities in Fig. 6(a) show perfect

FIG. 5. The direct fast Fourier transform (FFT) amplitudes of (a)

the displacement of EP (DEP, Uion) and (b) VEPO (�Uion) of ion cores

at different temperatures. Data shown are from a 20-ps NEAIMD

simulation of Cu at 298.49 K. The high and low temperatures

correspond to 374.92 K and 198.39 K, respectively.

075149-3



YUE, ZHANG, STACKHOUSE, QIN, DI NAPOLI, AND HU PHYSICAL REVIEW B 94, 075149 (2016)

FIG. 6. (a) Integration of positive and negative VEPO

[
∑Nal

j=1

∑

t �Uj (t)] at different temperatures. (b) The effective ampli-

tude of EPO [ 1

Nal

∑Nal

j=1

√

1

nsteps

∑nsteps

i=1 (Uij − U j )2, average root mean

square (rms) [16] of EPO, where Nal is the atom number per layer]

in atom layers along the �z direction. Data shown are from a 20-ps

NEAIMD simulation of Cu at 298.49 K.

linear behavior over time. From the absolute values, we have

Nal
∑

j=1

∑

t

|�Uj (t)hot| >

Nal
∑

j=1

∑

t

|�Uj (t)cold|,

which is consistent with the evidence shown in Figs. 5(a) and

5(b). Notably, in the same temperature region, the positive

and negative accumulations of
∑Nal

j=1 �Uj (t) are almost the

same. In other words,
∑Nal

j=1

∑

t �Uj (t) ≃ 0, and thus, there

is no net electric field gradient along the heat flux direction

for a sufficiently long statistical time. This result confirms the

physical picture illustrated in Fig. 4(b). Figure 6(b) presents

the distribution of the average effective amplitude of EPO in

each atom layer along the heat flux direction, UEPO(l), where

l is the index of the atom layers. Moreover, the amplitude

distribution of EPO explains how the thermal kinetic energy

of thermally excited electrons is divided in space. We calculate

UEPO(l) using the rms method [16]:

UEPO(l) =
1

Nal

Nal
∑

j=1

√

√

√

√

1

nsteps

nsteps
∑

ti

[Uj (ti) − U j ]2,

where nsteps is the total number of simulation time steps, Uj (ti)

is the U value of atom j in a specific layer at time step ti , and

U j is the average value of Uj (ti). Then, we define the heat flux

of electrons �Jel according to the kinetic energy of thermally

excited electrons between two adjacent atom layers. Because

of the isotropy of the free electron model (Supplemental

Material [23], Sec. 4), we take half of the difference of the

thermal kinetic energy of thermally excited electrons between

the two layers as

�Jel = −
1

2

n(e) e

S t

∂[2 UEPO(l) nsteps]

∂Nl

= −
n(e) e nsteps

S t

∂UEPO(l)

∂Nl

, (5)

where S is the cross-sectional area, t is the total simulation

time, n(e) is the number of free electrons per atom layer, and
∂UEPO(l)

∂Nl
is the gradient of the average effective amplitude value

of EPO by linear fitting of UEPO(l) with the atom layer index

number Nl shown in Fig. 6(b). Here, a nonlinear phenomenon

exists in the effective EPO amplitude distribution along the

heat flux direction in some metals, such as Al, Be, and Mg.

According to a case study of Be, we find that the nonlinear

effect of UEPO(l) can be reduced by increasing the system size

(Supplemental Material [23], Sec. 4.2). Because of the non-

linear effect, when we calculate the �Jel of Al, Be, and Mg, we

fit the linear part only. For Cu and Li, the UEPO(l) distributions

exhibit perfect linear behavior along the heat current direction.

Thus, we can calculate κel based on Fourier’s law:

�J = −κ∇T . (6)

Combining Eqs. (5) and (6), we obtain the expression for κel :

κel =
n(e) e nsteps

∇T S t

∂UEPO(l)

∂Nl

, (7)

where ∇T is obtained by linear-fitting the temperature profile

with the representative case shown in Fig. 2(b). Note that the

induced temperature gradient is greater than that expected in a

real system. Preliminary calculations showed that both κel and

κph were invariant to temperature gradient within the range

of values studied. This can be seen in our final values for

κ (Fig. 8(a); see detailed computation parameters in Table 1

and Table 3 in the Supplemental Material [23]). It should be

noted that each case listed in Table 3 in the Supplemental

Material [23] has a different temperature gradient, i.e., a

different heat flux. In some cases the temperature gradient

differs by a factor of 1.81, yet both κel and κph show no

noticeable difference. This indicates that different temperature

gradients result in almost the same κ . Using larger temperature

gradients (within the linear response regime) can help to

establish a stable temperature profile with a smaller associated

uncertainty, since the temperature difference between layers

becomes greater than statistical fluctuations. It is also helpful

to reduce nonlinear effects of the VEPO in space, enabling

us to obtain a stable value for the thermal conductivities from

both electrons and phonons. It also helps to ensure that we have

enough data for statistics. As the NEAIMD is realized by the

Müller-Plathe method, the temperature gradient relies on the

interval time for the exchange of atomic velocities between hot

and cold baths. The smaller the interval time (meaning more

frequent velocity exchange), the larger the heat flux of atoms

and the larger the temperature gradient. This means that with

larger temperature gradients we have more valid data points to

calculate the heat flux.
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FIG. 7. Integration of the atomic kinetic energy flux with time

based on the NEAIMD (Müller-Plathe) simulations of Al, Li, Be,

and Mg.

Within this framework, we studied the κel of five metals (Li,

Be, Mg, Al, and Cu) near room temperature. Additionally, by

integrating the Müller-Plathe [12] atomic kinetic energy flux,

as shown in Fig. 7, we predict the lattice (phonon) thermal

conductivities of the metals (κph). Here we adopt the statistical

physics approximation that, with sufficient simulation time, the

time average of κel and κph is equal to the ensemble average.

Because of finite-size effects, our NEAIMD results underes-

timate κph, especially for Cu and Mg (Supplemental Material

[23], Sec. 5). By summing κel and κph from the NEAIMD

simulations, we obtain the total thermal conductivities of the

metals, as presented in Fig. 8(a). The results demonstrate

that the thermal conductivities of metals slowly decrease with

temperature near room temperature, which is consistent with

traditional theory and experimental data. The error estimates

FIG. 8. NEAIMD-EPO simulation results for metals. (a) Total

thermal conductivities of metals from NEAIMD simulation (with

error bars determined from the calculation of ∇T and
∂UEPO(l)

∂Nl
along

the heat-transport direction) and experimental data at 300 K. (b) Pie

graphs showing the electronic and phononic contributions to the total

thermal conductivity of Al, Li, Be, and Mg at 300 K.

in Fig. 8(a) are calculated from the expression for κel and

error propagation theory [17]. They mainly stem from the

calculation of the gradient of UEPO(l) and ∇T . Here, we note

that because the statistical temperature fluctuation (�T )2 =
kBT 2/Cv [18] of each atom layer is large (because of the small

number of atoms per layer), the conventional error estimate of

∇T will be quite large. However, NEAIMD consistently yields

a stable temperature profile after a sufficiently long simulation

time. Thus, we adopt the error in the linear fitting for ∇T . We

also note that the aforementioned nonlinear phenomenon of

the gradient of UEPO(l) can also lead to large error bars. The

details of the error-bar analysis can be found in Supplemental

Material [23], Sec. 6. Meanwhile, in Fig. 8(b) we use pie

graphs to show the electronic and phononic contributions to

the total thermal conductivity. Our results show that κel indeed

dominates the thermal transport process in metals.

To the best of our knowledge, the BTE of electrons is

the only theory to be relatively successful in evaluating the

κel of solid metals. To compare our results with those of the

traditional BTE method, we also utilize the BoltzTraP software

[3] (based on electron energy band theory) to calculate κel

τel
.

However, it is very difficult to accurately and straightforwardly

calculate the lifetime of electrons. Theoretical studies indicate

that the magnitude of the lifetime of electrons is around

1×10−14 s at room temperature [1,3,4,22], and so, similarly to

previous studies [3,4], we also use the constant relaxation time

approximation, with τel = 1×10−14 s. To avoid finite-size

effects in the calculation of κph, we also evaluate κph from

the BTE method with interatomic force constants obtained

from ab initio calculations [19,20], as implemented in the

ShengBTE package [21]. Then, we obtain the total thermal

conductivities of the metals via the BTE method by summing

κel from BoltzTraP and κph from ShengBTE. Our NEAIMD

method, the traditional BTE method, and experimental data

are compared in Fig. 9. The results demonstrate that the BTE

method is unable to correctly describe κel for all metals,

and our method is superior to the traditional BTE method

in predicting the electronic thermal conductivities of metals,

especially for Be and Cu at room temperature.

FIG. 9. Bar graph comparing the thermal conductivities of metals

calculated using the NEAIMD method (with error bars), Boltzmann

method, and experimental data at 300 K.
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FIG. 10. Autocorrelation function of VEPO from NEAIMD

simulations for the case of (a) Cu and (b) Al. The exponential fitting

follows the function y = A exp(−t/τexp), where τexp represents the

exponential autocorrelation time of VEPO.

Moreover, we observe an interesting phenomenon when

calculating the spectral density of VEPO (S�U ) in Figs. 3(b)

and 3(d). We perform exponential decay fitting of the au-

tocorrelation function of the VEPO using the formula y =
A exp(−t/τexp). Surprisingly, the exponential autocorrelation

time of VEPO τexp at room temperature is on the same approxi-

mate order of magnitude as the theoretical collision time of the

free electrons [3,4,22]. The results for Cu and Al are shown

in Fig. 10. We also examine other metals (Be, Li, and Mg)

and obtain similar results (Supplemental Material [23], Sec.

8). Therefore, we anticipate that some physical mechanisms

must drive this phenomenon; i.e., it is not a coincidence.

Before closing, we would like to point out that, in the

BTE expression for κel , the interactions between electrons

and nuclei are implicit in the electron scattering time τel , or

equivalently, the presence of nuclei has a significant effect

on the electron scattering time, which, in turn, affects κel .

Thus, in principle, κel should depend on the vibration of

nuclei. In this sense, our theory and methodology is not

in conflict with the traditional free gas model. However, in

contrast to the traditional electron BTE method, our direct

nonequilibrium ab initio molecular dynamics simulation based

on EPO (we name it the NEAIMD-EPO method) can calculate

electronic thermal conductivity directly by mimicking the

real physical picture of the heat transfer in metals, without

artificial manipulation and input parameters. The NEAIMD-

EPO method naturally, but implicitly, includes the complicated

interactions between electrons and electron-phonon coupling.

Our method is applicable to all solid metals, whereas the

traditional electron BTE method struggles to evaluate κel

for some elements. Our method also has some limitations,

at present, such as (1) as our NEAIMD-EPO framework is

built on the free electron gas model, so far, this method

is limited to simulation of pure metals; (2) this method

cannot be directly used to simulate thermal transport of

metals at low temperatures; (3) as this method is realized in

the ab initio molecular dynamics simulation, the simulation

results will depend on the pseudopotential used; and (4) the

computation costs for the NEAIMD simulations are much

higher than that of normal density functional theory (DFT)

simulations. However, with theory and computational capacity

improving, the NEAIMD-EPO method shows potential for

investigation of different kinds of electronic systems, i.e.,

alloys, semiconductors, metal/nonmetal interfaces, and even

directly simulating nanodevices in the future.

IV. CONCLUSIONS

In summary, we have developed a methodology based on

the concept of electrostatic potential oscillation to predict the

electronic thermal conductivities of metals via direct nonequi-

librium ab initio molecular dynamics simulation. We provide

a clear physical picture of the origin of the thermal energy

carried by electrons and reveal how this energy is transported

in metals. Without explicitly addressing any complicated

scattering processes of free electrons, our NEAIMD-EPO

method provides better predictions of the electronic thermal

conductivities of pure metals than the traditional BTE method

near room temperature. Our methodology offers a route

to understand the physics of heat transfer by electrons at

the atomistic level. We expect that this methodology will

be helpful and useful for understanding and studying the

heat-transfer problems of metal systems in the future. Further

extension to cope with some presently challenging problems in

materials, such as electron-phonon coupling, is also foreseen.
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Alliance-High Performance Computing (JARA-HPC) from

RWTH Aachen University under Project No. jara0135. S.S.

was supported by Natural Environment Research Council

(NERC) Grant No. NE/K006290/1.

[1] C. Kittel, Introduction to Solid States Physics, 8th ed. (John

Wiley & Sons, Inc., USA, 2005), Chap. 6.

[2] W. Jones and N. H. March, Theoretical Solid State Physics

(Courier Dover Publications, New York, 1985).

075149-6



METHODOLOGY FOR DETERMINING THE ELECTRONIC . . . PHYSICAL REVIEW B 94, 075149 (2016)

[3] G. K. H. Madsen and D. J. Singh, BoltzTraP: A code for

calculating band-structure-dependent quantities, Comput. Phys.

Commun. 175, 67 (2006).

[4] M. X. Chen and R. Podloucky, Electronic thermal conductivity

as derived by density function theory, Phys. Rev. B 88, 045134

(2013).

[5] M. P. Desjarlais, J. D. Kress, and L. A. Collins, Electrical

conductivity for warm, dense aluminum plasmas and liquids,

Phys. Rev. E 66, 025401(R) (2002).

[6] M. Pozzo, C. Davies, D. Gubbins, and D. Alfè, Thermal
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