000817903 001__ 817903
000817903 005__ 20220930130103.0
000817903 0247_ $$2doi$$a10.1155/2016/4623040
000817903 0247_ $$2ISSN$$a1687-9120
000817903 0247_ $$2ISSN$$a1687-9139
000817903 0247_ $$2Handle$$a2128/12241
000817903 0247_ $$2WOS$$aWOS:000382628800001
000817903 0247_ $$2altmetric$$aaltmetric:7539757
000817903 037__ $$aFZJ-2016-04501
000817903 082__ $$a530
000817903 1001_ $$0P:(DE-HGF)0$$aHess, Karl$$b0
000817903 245__ $$aFrom Boole to Leggett-Garg: Epistemology of Bell-Type Inequalities
000817903 260__ $$aNew York, NY [u.a.]$$bHindawi Publ. Corp.$$c2016
000817903 3367_ $$2DRIVER$$aarticle
000817903 3367_ $$2DataCite$$aOutput Types/Journal article
000817903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472730882_15961
000817903 3367_ $$2BibTeX$$aARTICLE
000817903 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817903 3367_ $$00$$2EndNote$$aJournal Article
000817903 520__ $$aIn 1862, George Boole derived an inequality for variables that represents a demarcation line between possible and impossible experience. This inequality forms an important milestone in the epistemology of probability theory and probability measures. In 1985 Leggett and Garg derived a physics related inequality, mathematically identical to Boole’s, that according to them represents a demarcation between macroscopic realism and quantum mechanics. We show that a wide gulf separates the “sense impressions” and corresponding data, as well as the postulates of macroscopic realism, from the mathematical abstractions that are used to derive the inequality of Leggett and Garg. If the gulf can be bridged, one may indeed derive the said inequality, which is then clearly a demarcation between possible and impossible experience: it cannot be violated and is not violated by quantum theory. This implies that the Leggett-Garg inequality does not mean that the SQUID flux is not there when nobody looks, as Leggett and Garg suggest, but instead that the probability measures may not be what Leggett and Garg have assumed them to be, when no data can be secured that directly relate to them. We show that similar considerations apply to other quantum interpretation-puzzles such as two-slit experiments.
000817903 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000817903 588__ $$aDataset connected to CrossRef
000817903 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b1
000817903 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$eCorresponding author
000817903 773__ $$0PERI:(DE-600)2494134-7$$a10.1155/2016/4623040$$gVol. 2016, p. 1 - 7$$p4623040$$tAdvances in mathematical physics$$v2016$$x1687-9139$$y2016
000817903 8564_ $$uhttps://juser.fz-juelich.de/record/817903/files/4623040.pdf$$yOpenAccess
000817903 8564_ $$uhttps://juser.fz-juelich.de/record/817903/files/4623040.gif?subformat=icon$$xicon$$yOpenAccess
000817903 8564_ $$uhttps://juser.fz-juelich.de/record/817903/files/4623040.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817903 8564_ $$uhttps://juser.fz-juelich.de/record/817903/files/4623040.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817903 8564_ $$uhttps://juser.fz-juelich.de/record/817903/files/4623040.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817903 8564_ $$uhttps://juser.fz-juelich.de/record/817903/files/4623040.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817903 8767_ $$92016-08-08$$d2016-08-08$$eAPC$$jDeposit$$lDeposit: Hindawi$$zUSD 1.350,-
000817903 909CO $$ooai:juser.fz-juelich.de:817903$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000817903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
000817903 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000817903 9141_ $$y2016
000817903 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817903 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000817903 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATH PHYS : 2015
000817903 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000817903 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000817903 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817903 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817903 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817903 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817903 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000817903 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817903 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000817903 9801_ $$aFullTexts
000817903 980__ $$ajournal
000817903 980__ $$aVDB
000817903 980__ $$aUNRESTRICTED
000817903 980__ $$aI:(DE-Juel1)JSC-20090406
000817903 980__ $$aAPC