000817904 001__ 817904
000817904 005__ 20240711085622.0
000817904 0247_ $$2doi$$a10.1149/2.0951610jes
000817904 0247_ $$2ISSN$$a0013-4651
000817904 0247_ $$2ISSN$$a0096-4743
000817904 0247_ $$2ISSN$$a0096-4786
000817904 0247_ $$2ISSN$$a1945-7111
000817904 0247_ $$2Handle$$a2128/12242
000817904 0247_ $$2WOS$$aWOS:000389150900121
000817904 037__ $$aFZJ-2016-04502
000817904 082__ $$a540
000817904 1001_ $$0P:(DE-HGF)0$$aDoppler, M. C.$$b0
000817904 245__ $$aThe Capacitance of Nickel Pattern Electrodes on Zirconia Electrolyte
000817904 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2016
000817904 3367_ $$2DRIVER$$aarticle
000817904 3367_ $$2DataCite$$aOutput Types/Journal article
000817904 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472731381_15966
000817904 3367_ $$2BibTeX$$aARTICLE
000817904 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817904 3367_ $$00$$2EndNote$$aJournal Article
000817904 520__ $$aMicro-structured thin-film electrodes were employed to investigate the capacitive behavior of nickel on yttria-stabilized zirconia (YSZ) electrolytes by means of electrochemical impedance spectroscopy. Electrodes with different shapes and electrode areas clearly showed a linear relationship between capacitance and the electrode area. Electrostatic double layer models, however, could not explain the observed area specific capacitance value of ca. 3 F/m². This fact, the characteristic voltage dependence with a hysteresis, and the effect of H2S on the electrode capacitance indicate substantial contributions of a chemical capacitance. Possible types of chemical capacitance in the system Ni(H2/H2O)/YSZ are discussed and an oxygen partial pressure dependent mechanism change is suggested.
000817904 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000817904 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000817904 588__ $$aDataset connected to CrossRef
000817904 7001_ $$0P:(DE-HGF)0$$aFleig, J.$$b1
000817904 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b2
000817904 7001_ $$0P:(DE-HGF)0$$aOpitz, A. K.$$b3$$eCorresponding author
000817904 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0951610jes$$gVol. 163, no. 10, p. H1019 - H1025$$n10$$pH1019 - H1025$$tJournal of the Electrochemical Society$$v163$$x1945-7111$$y2016
000817904 8564_ $$uhttps://juser.fz-juelich.de/record/817904/files/J.%20Electrochem.%20Soc.-2016-Doppler-H1019-25.pdf$$yOpenAccess
000817904 8564_ $$uhttps://juser.fz-juelich.de/record/817904/files/J.%20Electrochem.%20Soc.-2016-Doppler-H1019-25.gif?subformat=icon$$xicon$$yOpenAccess
000817904 8564_ $$uhttps://juser.fz-juelich.de/record/817904/files/J.%20Electrochem.%20Soc.-2016-Doppler-H1019-25.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817904 8564_ $$uhttps://juser.fz-juelich.de/record/817904/files/J.%20Electrochem.%20Soc.-2016-Doppler-H1019-25.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817904 8564_ $$uhttps://juser.fz-juelich.de/record/817904/files/J.%20Electrochem.%20Soc.-2016-Doppler-H1019-25.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817904 8564_ $$uhttps://juser.fz-juelich.de/record/817904/files/J.%20Electrochem.%20Soc.-2016-Doppler-H1019-25.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817904 909CO $$ooai:juser.fz-juelich.de:817904$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000817904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000817904 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000817904 9141_ $$y2016
000817904 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817904 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000817904 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000817904 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000817904 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817904 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817904 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817904 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817904 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817904 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000817904 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817904 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817904 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000817904 9801_ $$aFullTexts
000817904 980__ $$ajournal
000817904 980__ $$aVDB
000817904 980__ $$aUNRESTRICTED
000817904 980__ $$aI:(DE-Juel1)IEK-1-20101013
000817904 981__ $$aI:(DE-Juel1)IMD-2-20101013