000817934 001__ 817934
000817934 005__ 20210129224045.0
000817934 0247_ $$2doi$$a10.1074/mcp.M115.056564
000817934 0247_ $$2pmid$$apmid:27281784
000817934 0247_ $$2ISSN$$a1535-9476
000817934 0247_ $$2ISSN$$a1535-9484
000817934 0247_ $$2WOS$$aWOS:000380809100012
000817934 0247_ $$2altmetric$$aaltmetric:8594996
000817934 037__ $$aFZJ-2016-04526
000817934 041__ $$aeng
000817934 082__ $$a540
000817934 1001_ $$0P:(DE-HGF)0$$aLiepelt, Anke$$b0
000817934 245__ $$aIdentification of RNA-binding Proteins in Macrophages by Interactome Capture.
000817934 260__ $$aBethesda, Md.$$bThe American Society for Biochemistry and Molecular Biology$$c2016
000817934 3367_ $$2DRIVER$$aarticle
000817934 3367_ $$2DataCite$$aOutput Types/Journal article
000817934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1473412000_17403
000817934 3367_ $$2BibTeX$$aARTICLE
000817934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817934 3367_ $$00$$2EndNote$$aJournal Article
000817934 520__ $$aPathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response. To systematically identify macrophage RBPs and their response to LPS stimulation, we employed RNA interactome capture in LPS-induced and untreated murine RAW 264.7 macrophages. This combines RBP-crosslinking to RNA, cell lysis, oligo(dT) capture of polyadenylated RNAs and mass spectrometry analysis of associated proteins. Our data revealed 402 proteins of the macrophage RNA interactome including 91 previously not annotated as RBPs. A comparison with published RNA interactomes classified 32 RBPs uniquely identified in RAW 264.7 macrophages. Of these, 19 proteins are linked to biochemical activities not directly related to RNA. From this group, we validated the HSP90 cochaperone P23 that was demonstrated to exhibit cytosolic prostaglandin E2 synthase 3 (PTGES3) activity, and the hematopoietic cell-specific LYN substrate 1 (HCLS1 or HS1), a hematopoietic cell-specific adapter molecule, as novel macrophage RBPs. Our study expands the mammalian RBP repertoire, and identifies macrophage RBPs that respond to LPS. These RBPs are prime candidates for the post-transcriptional regulation and execution of LPS-induced signaling pathways and the innate immune response. Macrophage RBP data have been deposited to ProteomeXchange with identifier PXD002890.
000817934 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000817934 588__ $$aDataset connected to CrossRef, PubMed,
000817934 7001_ $$0P:(DE-HGF)0$$aNaarmann-de Vries, Isabel S$$b1
000817934 7001_ $$0P:(DE-Juel1)132485$$aSimons, Nadine$$b2$$ufzj
000817934 7001_ $$0P:(DE-HGF)0$$aEichelbaum, Katrin$$b3
000817934 7001_ $$0P:(DE-HGF)0$$aFöhr, Sophia$$b4
000817934 7001_ $$0P:(DE-HGF)0$$aArcher, Stuart K$$b5
000817934 7001_ $$0P:(DE-HGF)0$$aCastello, Alfredo$$b6
000817934 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b7$$ufzj
000817934 7001_ $$0P:(DE-HGF)0$$aKrijgsveld, Jeroen$$b8
000817934 7001_ $$0P:(DE-HGF)0$$aPreiss, Thomas$$b9
000817934 7001_ $$0P:(DE-HGF)0$$aMarx, Gernot$$b10
000817934 7001_ $$0P:(DE-HGF)0$$aHentze, Matthias W$$b11
000817934 7001_ $$0P:(DE-HGF)0$$aOstareck, Dirk H$$b12$$eCorresponding author
000817934 7001_ $$0P:(DE-HGF)0$$aOstareck-Lederer, Antje$$b13$$eCorresponding author
000817934 773__ $$0PERI:(DE-600)2071375-7$$a10.1074/mcp.M115.056564$$gVol. 15, no. 8, p. 2699 - 2714$$n8$$p2699 - 2714$$tMolecular & cellular proteomics$$v15$$x1535-9484$$y2016
000817934 909CO $$ooai:juser.fz-juelich.de:817934$$pVDB
000817934 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL CELL PROTEOMICS : 2015
000817934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817934 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000817934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817934 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817934 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817934 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000817934 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000817934 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL CELL PROTEOMICS : 2015
000817934 9141_ $$y2016
000817934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132485$$aForschungszentrum Jülich$$b2$$kFZJ
000817934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b7$$kFZJ
000817934 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000817934 920__ $$lyes
000817934 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000817934 980__ $$ajournal
000817934 980__ $$aVDB
000817934 980__ $$aI:(DE-Juel1)IBG-2-20101118
000817934 980__ $$aUNRESTRICTED