001     817934
005     20210129224045.0
024 7 _ |2 doi
|a 10.1074/mcp.M115.056564
024 7 _ |2 pmid
|a pmid:27281784
024 7 _ |2 ISSN
|a 1535-9476
024 7 _ |2 ISSN
|a 1535-9484
024 7 _ |a WOS:000380809100012
|2 WOS
024 7 _ |a altmetric:8594996
|2 altmetric
037 _ _ |a FZJ-2016-04526
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Liepelt, Anke
|b 0
245 _ _ |a Identification of RNA-binding Proteins in Macrophages by Interactome Capture.
260 _ _ |a Bethesda, Md.
|b The American Society for Biochemistry and Molecular Biology
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1473412000_17403
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Pathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response. To systematically identify macrophage RBPs and their response to LPS stimulation, we employed RNA interactome capture in LPS-induced and untreated murine RAW 264.7 macrophages. This combines RBP-crosslinking to RNA, cell lysis, oligo(dT) capture of polyadenylated RNAs and mass spectrometry analysis of associated proteins. Our data revealed 402 proteins of the macrophage RNA interactome including 91 previously not annotated as RBPs. A comparison with published RNA interactomes classified 32 RBPs uniquely identified in RAW 264.7 macrophages. Of these, 19 proteins are linked to biochemical activities not directly related to RNA. From this group, we validated the HSP90 cochaperone P23 that was demonstrated to exhibit cytosolic prostaglandin E2 synthase 3 (PTGES3) activity, and the hematopoietic cell-specific LYN substrate 1 (HCLS1 or HS1), a hematopoietic cell-specific adapter molecule, as novel macrophage RBPs. Our study expands the mammalian RBP repertoire, and identifies macrophage RBPs that respond to LPS. These RBPs are prime candidates for the post-transcriptional regulation and execution of LPS-induced signaling pathways and the innate immune response. Macrophage RBP data have been deposited to ProteomeXchange with identifier PXD002890.
536 _ _ |0 G:(DE-HGF)POF3-582
|a 582 - Plant Science (POF3-582)
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |0 P:(DE-HGF)0
|a Naarmann-de Vries, Isabel S
|b 1
700 1 _ |0 P:(DE-Juel1)132485
|a Simons, Nadine
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Eichelbaum, Katrin
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Föhr, Sophia
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Archer, Stuart K
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Castello, Alfredo
|b 6
700 1 _ |0 P:(DE-Juel1)145719
|a Usadel, Björn
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Krijgsveld, Jeroen
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Preiss, Thomas
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Marx, Gernot
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Hentze, Matthias W
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Ostareck, Dirk H
|b 12
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Ostareck-Lederer, Antje
|b 13
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2071375-7
|a 10.1074/mcp.M115.056564
|g Vol. 15, no. 8, p. 2699 - 2714
|n 8
|p 2699 - 2714
|t Molecular & cellular proteomics
|v 15
|x 1535-9484
|y 2016
909 C O |o oai:juser.fz-juelich.de:817934
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132485
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145719
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-582
|1 G:(DE-HGF)POF3-580
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MOL CELL PROTEOMICS : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b MOL CELL PROTEOMICS : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21