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An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic

electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection

fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic

definition by differences of the total energies of the N -, (N − 1)-, and (N + 1)-electron system. The response

functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA).

For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation

the resulting band gaps are very close to experiment and of a similar quality to those from the computationally

more involved GW approximation. By going beyond the dRPA in the future the accuracy of the calculated band

gaps may be significantly improved further.
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I. INTRODUCTION

The most important quantity to characterize the electronic

properties of a semiconductor or insulator is the fundamental

band gap. The calculation of band gaps, more precisely of

fundamental quasiparticle band gaps, therefore is a key task

in solid state physics and materials science. The standard

approach to determine band gaps as well as ionization

potentials and electron affinities starts from Kohn-Sham (KS)

band structures [1] and then uses the GW method [2,3], i.e.,

applies many-body perturbation theory. This approach has

conceptual as well as computational shortcomings. The com-

mon procedure is to carry out the GW calculations completely

or partly non-self-consistently, that is, to perform G0W0 or

GW0 calculations. In this case the obtained results depend

significantly on the choice of the underlying KS method, i.e.,

the choice of the exchange-correlation functional made in the

calculation of the KS band structure [3–5]. Self-consistent GW

calculations, on the other hand, are not only computationally

expensive but typically yield worse results than G0W0 or GW0

calculations. Finally, the step to supplement self-consistent

GW calculations by vertex corrections [6] to increase the

accuracy is computationally prohibitively expensive.

We here investigate an alternative strategy to determine

fundamental band gaps, ionization potentials, and electron

affinities that avoids many-body perturbation theory. Band

gaps �, ionization potentials IP , and electron affinities

EA of periodic systems, in contrast to common wisdom,

can be calculated starting from differences of the total

energies E[N ], E[N − 1], E[N + 1] of the N -, (N − 1)-, and

(N + 1)-electron system, respectively, according to their ba-

sic definitions � = E[N − 1] + E[N + 1] − 2E[N ], IP =
E[N − 1] − E[N ], EA = E[N ] − E[N + 1]. The required

total energies are accessible by density-functional theory more

precisely via KS calculations. To that end, however, standard

KS methods [7,8] relying on the local density approximation

(LDA) or on the generalized gradient approximation (GGA)

*andreas.goerling@fau.de

are not suitable [9]. KS methods that treat the exchange

energy exactly and take into account the correlation energy

via the adiabatic-connection fluctuation-dissipation (ACFD)

theorem [10–19] in conjunction with the direct random phase

approximation (dRPA), on the other hand, can be used to

that purpose. An approach along these lines was suggested

in Ref. [20] and yielded band gaps in good agreement with

experiment for carbon and silicon.

In Ref. [20], however, the band gaps were not directly

calculated from the total energies E[N ], E[N − 1], and

E[N + 1]. Instead, starting from differences of the correla-

tion energies EdRPA
c [N ], EdRPA

c [N − 1], and EdRPA
c [N + 1]

within the direct random phase approximation (dRPA) of the

N -, (N − 1)-, and (N + 1)-electron system, expressions for

the ionization energy and the electron affinity were derived

that resemble those of the GW method. In order to do that,

terms vanishing in the limit of infinite periodic systems were

neglected. The calculations of Ref. [20] used pseudopotentials

and in order to converge the results approximations typically

applied in GW methods like the plasmon-pole approximation

were used. Moreover, the required KS orbitals and eigenvalues

were obtained exclusively from LDA calculations.

In this work we calculate band gaps directly according

to their definition from the total energies E[N ], E[N − 1],

and E[N + 1] obtained within the dRPA with a plane-wave

pseudopotential program, the program MCEXX [21], and

with the all-electron full-potential linearized augmented plane-

wave (FLAPW) package FLEUR [22,23]. Besides silicon and

carbon, we consider band gaps of a prototypical set of semi-

conductors. The calculations invoke no approximations like

the plasmon-pole approximation. Moreover, we investigate

the influence of the exchange-correlation potential used to

obtain the KS orbitals and eigenvalues, by considering an GGA

exchange-correlation potential and the exact-exchange-only

potential.

In a second step we then rederive the GW -like expression

of Ref. [20] in a slightly different way and investigate how fast

the terms neglected in the GW -like expression vanish with

the system size by recalculating the band gaps for increasing

numbers of k points. Furthermore we test a perturbative

2469-9950/2016/94(7)/075123(9) 075123-1 ©2016 American Physical Society
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treatment of the required eigenvalues of the response matrices

of the (N − 1)- and (N + 1)-electron system.

II. FORMALISM

A. Adiabatic-connection fluctuation-dissipation theorem and

the direct random phase approximation

The ACFD theorem [10,11] provides an exact expression

for the KS correlation energy Ec in terms of the density-density

(potential-density) response functions χ0 and χα of the KS

model system and of systems with an electron-electron inter-

action scaled by a coupling constant 0 � α � 1, respectively:

Ec =
−1

2π

∫ ∞

0

dω

∫ 1

0

dα

∫

drdr′ 1

|r − r′|
× [χα(iω,r,r′) − χ0(iω,r,r′)]. (1)

The ACFD theorem contains the dynamic, i.e., frequency-

dependent, Kohn-Sham response function χ0 for imaginary

frequencies iω, which reads as

χ0(iω,r,r′) =
∑

i

∑

s

4(εi − εs)

(εi − εs)2 + ω2

×ϕi(r)ϕs(r)ϕs(r
′)ϕi(r

′) (2)

for real-valued orbitals. The summations run over all occupied

orbitals ϕi and all orbitals ϕs , respectively. The corresponding

orbital eigenvalues are given by εi and εs . Bloch orbitals are

complex-valued. In the presence of time-reversal (complex-

conjugation) symmetry, however, Bloch orbitals can formally

be converted into real-valued orbitals by a unitary transfor-

mation and then the above expression for the KS response

function applies; see below for further details.

Besides the dynamic KS response function, the ACFD

theorem (1) contains the dynamic response function χα ,

which, in contrast to the KS response function χ0, is the

response function of a system of interacting electrons with an

electron-electron interaction scaled by the coupling constant

0 � α � 1. For α = 0, χα turns into the KS response function

χ0 of the KS model system of hypothetical noninteracting

electrons. For α = 1, χα is the dynamic response function of

the real electron system with the physical electron-electron

interaction. The electronic systems with a scaled electron-

electron interaction are defined by the requirement that they

exhibit the same electron density as the real physical electron

system.

By the coupling-constant integration in the ACFD theorem

(1) the kinetic contribution to the correlation energy is taken

into account. This is crucial because the kinetic contribution

is substantial; see, e.g., Ref. [14].

The response function χα is given by the basic equation

∫

dr′′
[

δ(r − r′′) −
∫

dr′χ0(ν,r,r′)f α
Hxc(ν,r′,r′′)

]

×χα(ν,r′′,r′′′) = χ0(ν,r,r′′′) (3)

of time-dependent density functional theory (TDDFT) in the

linear response regime [24–26]. In Eq. (3) the frequency is

denoted by ν. Here pure imaginary frequencies ν = iω with

ω being real-valued are considered. By f α
Hxc the sum of the

Coulomb kernel fH(r′,r′′) = 1/|r′ − r′′| scaled by α plus the

xc kernel f α
xc is denoted. The xc kernel f α

xc is the frequency-

dependent functional derivative of the exchange-correlation

potential with respect to the electron density. The kernel f α
xc

is not known exactly. This is the only point in correlation

methods based on the ACFD theorem where approximations

are necessary. The approximation to neglect the kernel f α
xc and

to only take into account the Coulomb kernel fH is the direct

random phase approximation [12–15,18].

Next an orthonormal auxiliary basis set to represent the

response functions and the Coulomb kernel is introduced; for

details see below. This turns the ACFD theorem into

Ec =
−1

2π

∑

q

∫ ∞

0

dω

∫ 1

0

dα

× Tr{FH (q)[Xα(iω,q) − X0(iω,q)]} (4)

with the matrices FH (q), X0(iω,q), Xα(iω,q) representing

the Hartree kernel fH, the KS response function χ0, and the

response function χα . At this point it was used that in a

periodic system the linear response functions for perturbations

of different Bloch vectors q do not couple. In case of the plane-

wave implementation with pseudopotentials, the auxiliary

basis functions are simply plane waves and the matrix FH (q) is

a diagonal matrix with matrix elements equal to 4π/(G + q)2.

In the case of the FLAPW implementation an initial auxiliary

basis, the mixed product basis [27–29] constructed from

products of LAPW basis functions, is introduced and the

Coulomb matrix FH (q) is calculated according to Ref. [28].

The eigenvectors of this Coulomb matrix then define the final

orthonormal auxiliary basis. The matrix elements of the matrix

X0(iω,q) are given in Eqs. (27) and (28) below and in the

Supplemental Material [30].

The response matrix Xα(iω,q) is determined by the matrix

representation of Eq. (3) after applying the dRPA, i.e., by

[1 − X0(ν,q)αFH (q)]Xα(ν,q) = X0(ν,q). (5)

Substitution of Eq. (5) into Eq. (4) after setting ν = iω leads

to

Ec =
−1

2π

∑

q

∫ ∞

0

dω

∫ 1

0

dαTr{FH (q)[[1 − αX0(iω,q)

× FH (q)]−1X0(iω,q) − X0(iω,q)]}

=
−1

2π

∑

q

∫ ∞

0

dω

∫ 1

0

dα

×Tr{[[1 − αX̃0(iω,q)]−1X̃0(iω,q) − X̃0(iω,q)]} (6)

with

X̃0(iω,q) = F
1/2

H (q)X0(iω,q)F
1/2

H (q). (7)

The coupling constant integration in Eq. (6) can be carried

out analytically with the spectral representation

X̃0(iω,q) = U(iω,q)σ (iω,q)U†(iω,q) (8)
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containing in the columns of the matrix U(iω,q) the eigen-

vectors of X̃0(iω,q) and in the diagonal matrix σ (iω,q) the

corresponding eigenvalues. This leads to the final expression

Ec =
1

2π

∑

q

∫ ∞

0

dωTr{ln[1−σ (iω,q)] + σ (iω,q)} (9)

for the dRPA correlation energy which is actually evaluated.

The response matrix X̃0(iω,q) is negative definite and there-

fore the logarithm in Eq. (9) is always well defined.

In our implementations, the evaluation of the dRPA cor-

relation energy requires (i) the construction of the response

matrix X0(iω,q), (ii) the construction of the scaled response

matrix X̃0(iω,q) and its diagonalization in order to obtain

the eigenvalues, and (iii) the evaluation of expression (9) for

the correlation energy. The computationally most expensive

step is the construction of the response matrix, step (i). Its

computational effort scales with M4 with the system size M .

The linear algebra of step (ii) scales with M3 and was not an

important factor with respect to the computational effort in

the actual calculations we performed. The last step (iii) scales

linearly with the system size and its computational effort was

negligible.

B. Band gaps from total energy differences

We start from the definition of the ionization potential

IP = E[N − 1] − E[N ]

= Ts[N − 1] + Ev[N − 1] + EHxc[N − 1]

− Ts[N ] − Ev[N ] − EHxc[N ] (10)

in terms of the total energies E[N − 1] and E[N ] of the

(N − 1)- and N -electron system, respectively. Then the total

energies are decomposed as usual in the KS formalism

with Ts denoting the noninteracting kinetic energy, with Ev

designating the interaction energy with the external potential

v, which usually is the potential of the nuclei, and with EHxc

denoting the sum of Hartree, exchange, and correlation energy.

In order to evaluate Eq. (10), in the most general case,

we have to carry out two self-consistent KS ground state

calculations, for the N - and (N − 1)-electron system, namely.

In the case of finite systems like atoms and molecules this

indeed is necessary. In the case of solids the relaxation of

the KS orbitals and eigenvalues upon a change of the particle

number by one electron vanishes for large particle numbers

N , which in the thermodynamic limit are of the order of

Avogadro’s number and in a practical calculation equal the

number of electrons per unit cell times the number of k points.

We therefore can evaluate the contributions to the energies

of both the N - and the (N − 1)-electron system with the

orbitals and eigenvalues determined in a KS calculation of

the N -electron system and obtain

IP = −〈ϕH | − 1
2
∇2 + v̂|ϕH 〉 + EHxc[N − 1] − EHxc[N ].

(11)

Here ϕH denotes the energetically highest occupied molecular

orbital (HOMO) or the one-electron state representing the top

of the valence band. In the following, we use the acronym

HOMO as a synonym for both cases.

For exchange-correlation functionals based on the LDA or

GGA, the total energy differences of expressions (10) and (11)

reduce to the negative of the KS eigenvalue εH of the HOMO

[9] which is known to be a very poor estimate for the true

IP in the LDA or GGA case. This is a shortcoming of the

LDA or GGA which must not be interpreted as a fundamental

shortcoming of the KS formalism [9].

For the exact exchange-correlation functional and for ap-

propriate orbital-dependent exchange-correlation functionals

the total energy differences in expressions (10) and (11) do

not reduce to the negative of εH . For the difference EHx[N −
1] − EHx[N ] of the Coulomb plus the exact exchange energy

of the (N − 1)- and the N -electron system, respectively, we

obtain

EHx[N − 1]−EHx[N ] = −〈ϕH |v̂H |ϕH 〉 − 〈ϕH |v̂NL
x |ϕH 〉

(12)

with v̂H and v̂NL
x denoting, respectively, the Hartree potential

and a nonlocal exchange potential of the form of the Hartree-

Fock exchange potential but constructed from KS orbitals.

This follows from the basic definitions

EH [N ] = 2

N/2
∑

i=1

N/2
∑

j=1

〈ϕiϕj |ϕiϕj 〉 (13)

and

Ex[N ] = −
N/2
∑

i=1

N/2
∑

j=1

〈ϕiϕj |ϕjϕi〉 (14)

of the Hartree EH [N ] and the exchange energy Ex[N ] of a

non-spin-polarized N -electron Slater determinant with

〈ϕiϕj |ϕiϕj 〉 =
∫

drdr′ ϕ
∗
i (r)ϕi(r)ϕ∗

j (r′)ϕj (r′)

|r − r′|
(15)

and

〈ϕiϕj |ϕjϕi〉 =
∫

drdr′ ϕ
∗
i (r)ϕj (r)ϕ∗

j (r′)ϕi(r
′)

|r − r′|
, (16)

where ϕi and ϕj denote occupied spatial KS orbitals. Spin is

taken into account via the prefactors of the summations.

If we exploit that the KS orbitals do not change upon a

removal of an electron in the limit of a large number of

electrons, then the sum EHx[N − 1] of the Hartree and the

exchange energy of the corresponding (N − 1)-electron Slater

determinant is obtained by simply removing the contributions

from an electron in the energetically highest occupied molec-

ular orbital ϕH in Eqs. (13) and (14). The energy difference

EHx[N − 1] − EHx[N ] is then given by

EHx[N − 1] − EHx[N ]

=
N/2
∑

j=1

[−2〈ϕH ϕj |ϕHϕj 〉 + 〈ϕHϕj |ϕjϕH 〉]. (17)

With the Hartree potential

vH (r) = 2

N/2
∑

j=1

∫

dr′ ϕ
∗
j (r′)ϕj (r′)

|r − r′|
(18)
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and the nonlocal exchange potential v̂NL
x with the integral

kernel −
∑N/2

j=1

ϕj (r)ϕ∗
j (r′)

|r−r′| we obtain Eq. (12).

Inserting Eq. (12) in expression (11) yields

IP = −〈ϕH | − 1
2
∇2 + v̂ + v̂H |ϕH 〉 − 〈ϕH |v̂NL

x |ϕH 〉
+Ec[N − 1] − Ec[N ]. (19)

The correlation energies Ec[N − 1] and Ec[N ], need to be

approximated. We apply the ACFD theorem and invoke the

dRPA. The resulting correlation energies in the dRPA shall be

denoted by EdRPA
c [N − 1] and EdRPA

c [N ].

Next we take into account that the KS orbitals obey the KS

equation
[

− 1
2
∇2 + v̂ + v̂H + ˆ̃vx + ˆ̃vc

]

ϕi = εiϕi (20)

with ˆ̃vx and ˆ̃vc denoting the exchange and correlation potentials

needed to generate the KS orbitals and eigenvalues. For ˆ̃vx and
ˆ̃vc any of the common LDA or GGA potentials can be chosen;

in the case of ˆ̃vx also the exact exchange potential may be

employed. If we add and subtract 〈ϕH | ˆ̃vx |ϕH 〉 + 〈ϕH | ˆ̃vc|ϕH 〉
to the right-hand side of Eq. (19) we obtain the ionization

potential in the form

IP = −εH − 〈ϕH |v̂NL
x − ˆ̃vx |ϕH 〉

+EdRPA
c [N − 1] − EdRPA

c [N ] + 〈ϕH | ˆ̃vc|ϕH 〉.
(21)

In a completely analogous way we obtain for the electron

affinity

EA = −εL − 〈ϕL|v̂NL
x − ˆ̃vx |ϕL〉 + EdRPA

c [N ]

−EdRPA
c [N + 1] + 〈ϕL| ˆ̃vc|ϕL〉 (22)

with ϕL denoting the energetically lowest unoccupied or-

bital. The difference between IP and EA yields the band

gap

� = εL − εH + 〈ϕL|v̂NL
x − ˆ̃vx |ϕL〉 − 〈ϕH |v̂NL

x − ˆ̃vx |ϕH 〉

+EdRPA
c [N + 1] + EdRPA

c [N − 1] − 2EdRPA
c [N ]

−〈ϕL| ˆ̃vc|ϕL〉 + 〈ϕH | ˆ̃vc|ϕH 〉

= �ε + �̃x + �̃dRPA
c (23)

with

�ε = εL − εH , (24)

with

�̃x = 〈ϕL|v̂NL
x − ˆ̃vx |ϕL〉 − 〈ϕH |v̂NL

x − ˆ̃vx |ϕH 〉,
(25)

and with

�̃dRPA
c = EdRPA

c [N + 1] + EdRPA
c [N − 1] − 2EdRPA

c [N ]

−〈ϕL| ˆ̃vc|ϕL〉 + 〈ϕH | ˆ̃vc|ϕH 〉. (26)

In the following, we consider two choices for ˆ̃vx and
ˆ̃vc. The first choice is to employ the GGA exchange-

correlation potential due to Perdew, Burke, and Ernzerhof

(PBE) [31] for the calculation of the KS orbitals and

eigenvalues, i.e., ˆ̃vx = v̂PBE
x and ˆ̃vc = v̂PBE

c . Using the exact-

exchange-only (EXX) method [32–36] to determine the

orbitals and eigenvalues represents the second choice. In

this case ˆ̃vx equals the exact KS exchange potential v̂x , �̃

equals the exact derivative discontinuity �x of the exchange

potential [37–41], and, furthermore, �̃dRPA
c = �EdRPA

c =
EdRPA

c [N + 1] + EdRPA
c [N − 1] − 2EdRPA

c [N ].

A calculation of the required matrix elements containing

the operators ˆ̃vx , ˆ̃vc, and v̂NL
x is straightforward and requires

a computational effort less than that of one self-consistency

cycle of a Hartree-Fock or a hybrid-DFT calculation. The cal-

culation of the dRPA correlation energy EdRPA
c [N ] comprises

one somewhat demanding step, the construction of causal

density-density (potential-density) KS response matrices for

complex frequencies iω and perturbing potentials with Bloch

vector q. The elements XN
µν(iω,q) of these response matrices

are given by

XN
µν(iω,q) = 4

∑

i

∑

s

∑

k

εik − εsk+q

(εik − εsk+q)2 + ω2

×〈ϕik|f ∗
µq|ϕsk+q〉〈ϕsk+q|fνq|ϕik〉 (27)

with ϕik and ϕsk+q denoting Bloch orbitals with eigenvalues

εik and εsk+q. Note that in Eq. (27) and below we suppress

the subscript 0 for the KS response matrices for notational

simplicity because only KS response matrices occur in the

dRPA correlation energy. By fµq and fνq auxiliary basis

functions used to represent the KS response function are

denoted. In the simplest case fµq and fνq are plane waves

1/
√

�exp[i(G + q)r] and 1/
√

�exp[i(G′ + q)r]; i.e., µ and

ν correspond to G and G′. By � the crystal volume is denoted.

(See Supplemental Material [30] for other choices of fµq and

fνq.) The summation indices i and s run over all occupied

and all orbitals, respectively. We consider non-spin-polarized

systems and take into account the spin degree of freedom by

appropriate factors.

For the correlation energy EdRPA
c [N − 1] we have to

construct a corresponding KS response function for the

(N − 1)-electron KS system. This means we remove one

electron from the HOMO orbital ϕHkH
, the energetically

highest orbital at the Bloch vector kH corresponding to the top

of the valence band. In the absence of magnetic fields time-

reversal (complex-conjugation) symmetry guarantees that with

an occupied orbital ϕik also ϕi−k is an occupied orbital

contributing to the N -electron KS determinant. Via a unitary

transformation we can therefore change from complex-valued

Bloch orbitals to real-valued orbitals and then remove an

electron from the real-valued orbital (1/
√

2)(ϕHkH
+ ϕH−kH

).

(In the case kH = 0 we can directly remove an electron from

the orbital ϕHkH
which then is real-valued.) In this way not

only the N - but also the (N − 1)-electron KS determinant is

real-valued and both response matrices are negative definite.

The matrix elements XN−1
µν (iω,q) of the (N − 1)-electron

KS response matrix XN−1 are then expressed according

to

XN−1(iω,q) = XN (iω,q) + �X−(iω,q) (28)
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by the N -electron KS response matrix XN plus a difference

term �X− with matrix elements

�X−
µν(iω,q) = −

∑

s

εHkH
− εskH +q

(εHkH
− εskH +q)2 + ω2

×〈ϕHkH
|f ∗

µq|ϕskH +q〉〈ϕskH +q|fνq|ϕHkH
〉

−
∑

s

εH−kH
− εs−kH +q

(εH−kH
− εs−kH +q)2 + ω2

×〈ϕH−kH
|f ∗

µq|ϕs−kH +q〉〈ϕs−kH +q|fνq|ϕH−kH
〉.

(29)

The evaluation of the matrix elements XN−1
µν (iω,q) is

carried out with Bloch orbitals, i.e., formally after a unitary

transformation of the real-valued orbitals of the (N − 1)-

electron KS determinant back to Bloch orbitals. Moreover, we

exploit that the removal of a single electron does not change the

KS orbitals in the relevant limit of a large number of k points.

Therefore the matrix elements XN−1
µν (iω,q) like the matrix

elements XN
µν(iω,q) can be evaluated with the orbitals from the

N -electron KS determinant. The two summations in Eq. (29)

for �X−
µν(iω,q) are computationally much less demanding

than those in Eq. (27) for XN
µν(iω,q) because they do not

include summations over occupied bands or k points. The

matrix elements XN+1
µν (iω,q) of the (N + 1)-electron response

matrices are accessible in an exactly analogous fashion; see

Supplemental Material [30].

From the eigenvalues of the N , the (N − 1)-, and the

(N + 1)-electron response matrices the correlation energies

EdRPA
c [N ], EdRPA

c [N − 1], and EdRPA
c [N + 1] can be imme-

diately calculated.

Total energies and their individual components are usually

calculated per unit cell. For the energy differences �, IP , and

EA, however, the energies of the complete system are required.

This means the energies per unit cell have to be multiplied by

the number of k points.

C. Alternatives to a calculation of band gaps directly from total

energy differences

We again concentrate on the calculation of the ionization

energy; the electron affinity can be treated analogously. The

difference of the correlation energies of the N - and the

(N − 1)-electron system is given by

EdRPA
c [N − 1] − EdRPA

c [N ]

=
1

2π

∑

q

∫ ∞

0

dωTr{ln[1 − σ
N−1(iω,q)] + σ

N−1(iω,q)}

−
1

2π

∑

q

∫ ∞

0

dωTr{ln[1 − σ
N (iω,q)] + σ

N (iω,q)}

(30)

in the dRPA. The correlation energies EdRPA
c [N ] and

EdRPA
c [N − 1] in the above equation are given by Eq. (9)

evaluated for the N - and the (N − 1)-electron system. The

superscripts N and N − 1 in Eq. (30) and the following

equations indicate whether a quantity refers to the N - or the

(N − 1)-electron system. With the difference

�σ
−(iω,q) = σ

N−1(iω,q) − σ
N (iω,q), (31)

Eq. (30) assumes the form

EdRPA
c [N − 1] − EdRPA

c [N ]

=
1

2π

∑

q

∫ ∞

0

dωTr{ln[1 − σ
N (iω,q) − �σ

−(iω,q)]

− ln[1 − σ
N (iω,q)] + �σ

−(iω,q)}

=
1

2π

∑

q

∫ ∞

0

dωTr{ln[1−[1−σ
N (iω,q)]−1�σ

−(iω,q)]

+�σ
−(iω,q)}. (32)

Next we scale the difference �X− between the (N − 1)-

and the N -electron response matrix, given in Eqs. (28) and

(29) by the Coulomb kernel

�X̃−(iω,q) = F
1/2

H (q)�X−(iω,q)F
1/2

H (q). (33)

The elements �σ−
n of the diagonal matrix �σ

− then are given

in first-order perturbation theory by

�σ−
n (iω,q) ≈ u†

n(iω,q)�X̃−(iω,q)u†
n(iω,q) (34)

with un denoting the eigenvectors of the N -electron response

matrix. That means, the un are the columns of the matrix U

defined in Eq. (8). In the limit of an infinite system, i.e., in the

limit of a large number of k points, Eq. (34) becomes exact.

The reason is that the difference �X− and subsequently �X̃−

scales with the inverse of the crystal volume �. This follows

immediately from Eq. (29) for the matrix elements of �X−.

It contains two matrix elements, each of which contain two

orbitals and one auxiliary basis function with normalization

factors of 1/
√

� leading altogether to a factor of 1/�3. The

integration of each of the matrix elements leads to a factor

of �. The two integrations together thus provide a factor of

�2. Finally a factor of �2/�3 = 1/� remains in the matrix

elements of �X−. This means the difference �X− between the

(N − 1)- and the N -electron response matrix is proportional

to 1/� and therefore vanishes with large numbers of k points.

In this physically relevant limit the perturbative treatment of

�σ
− according to Eq. (34) becomes exact. Note that in the

evaluation of EdRPA
c [N − 1] − EdRPA

c [N ], Eqs. (30) and (32),

a summation over q occurs. In the limit of an infinite system

this integration turns into an integral with a prefactor of �/8π3

which cancels the factor of 1/� contained in �X−. Therefore

EdRPA
c [N − 1] − EdRPA

c [N ] converges to a nonzero value in

the limit of an infinite system.

If EdRPA
c [N − 1] − EdRPA

c [N ] is calculated by Eq. (32)

in conjunction with the perturbative treatment of �X− ac-

cording to Eq. (34) then only the N -electron but not the

(N − 1)-electron response matrix needs to be diagonalized.

The computational savings by avoiding the diagonalization

of the (N − 1)-electron response matrix, however, are not

important, because the diagonalizations do not represent the

computationally expensive steps. Their computational effort

scales with M3 if M represents the system size, whereas

the computational effort for constructing the N -electron

response matrix scales with M4. This latter task represents

the computationally most demanding step. In Sec. III B we
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demonstrate that band gaps calculated according to Eqs. (32)

and (34) converge towards those obtained by calculating the

required dRPA correlation energies via diagonalization of the

N -, the (N − 1)-, and the (N + 1)-electron response matrices

as described in the previous section.

Next we expand the logarithm in Eq. (32) in a Taylor series

ln{1 − [1 − σ
N (iω,q)]−1�σ

−(iω,q)}
= −[1 − σ

N (iω,q)]−1�σ
−(iω,q) + O(1/�2). (35)

Because �σ
− is proportional to 1/� the higher order terms in

this expansion contain factors of 1/�n with n � 2. If we insert

the expansion (35) in Eq. (32) then these higher order terms

vanish in the limit of an infinite system, because converting

the summation over q in this limit in an integral only leads to

a factor of �/8π3 and therefore factors of 1/�m with m � 1

remain in the higher order terms. With the expansion (35),

Eq. (32) turns into

EdRPA
c [N − 1] − EdRPA

c [N ]

=
−1

2π

∑

q

∫ ∞

0

dωTr{[1 − σ
N (iω,q)]−1�σ

−(iω,q)

−�σ
−(iω,q)}. (36)

The first part of the integrand in Eq. (32) can be reformulated

according to

Tr{[1 − σ
N (iω,q)]−1�σ

−(iω,q)}
= Tr{[1 − σ

N (iω,q)]−1U†(iω,q)

×U(iω,q)�σ
−(iω,q)U†(iω,q)U(iω,q)}

= Tr{U(iω,q)[1 − σ
N (iω,q)]−1U†(iω,q)

×[U(iω,q)�σ
−(iω,q)U†(iω,q)

+ U(iω,q)σN (iω,q)U(1)†(iω,q)

+ U(1)(iω,q)σN (iω,q)U†(iω,q)]}
= Tr{[1 − X̃N (iω,q)]−1�X̃−(iω,q)}. (37)

In Eq. (37) the matrix U(1) denotes the difference of the

unitary matrix U containing the eigenvectors of the scaled

N -electron response matrix X̃N , Eq. (8), and a corresponding

matrix containing the eigenvectors of the (N − 1)-electron

response matrix X̃N−1 in first order in the difference �X̃−.

The product U(1)†U is a matrix with diagonal elements

being zero because the eigenvectors of the response matri-

ces are normalized. As a consequence expressions of the

form Tr{[1 − σ
N (iω,q)]−1�σ

−(iω,q)U(1)†U} are zero and the

terms containing U(1) can be added. To obtain the last line of

Eq. (37) we use that

�X̃−(iω,q) ≈ U(iω,q)�σ
(1)(iω,q)U†(iω,q)

+ U(iω,q)σN (iω,q)U(1)†(iω,q)

+ U(1)(iω,q)σN (iω,q)U†(iω,q), (38)

which holds true in first order. In Eq. (38) �σ
(1) is the first-

order approximation to �σ
− with matrix elements given in

Eq. (34). Similarly also

Tr{�σ
−(iω,q)} ≈ Tr{�X̃−(iω,q)} (39)

holds true in first order.

Inserting Eqs. (37) and (39) in (36) yields

EdRPA
c [N − 1] − EdRPA

c [N ]

=
−1

2π

∑

q

∫ ∞

0

dωTr{[1 − X̃N (iω,q)]−1�X̃−(iω,q)

−�X̃−(iω,q)}. (40)

In the relevant limit of an infinite system we need to take into

account only quantities up to first order in �X̃− and therefore

Eq. (40) holds true in this limit.

Finally we define the matrix

W(iω,q) = [1 − X̃N (iω,q)]−1 (41)

to turn Eq. (40) into

EdRPA
c [N − 1] − EdRPA

c [N ]

=
−1

2π

∑

q

∫ ∞

0

dωTr{W(iω,q)�X̃−(iω,q)

−�X̃−(iω,q)}. (42)

In an analogous fashion we can obtain a corresponding

expression for the difference

EdRPA
c [N ] − EdRPA

c [N + 1]

=
1

2π

∑

q

∫ ∞

0

dωTr{W(iω,q)�X̃+(iω,q)

−�X̃+(iω,q)} (43)

required in the calculation of the electron affinity. Here �X̃+ is

obtained by scaling the difference �X+ of the (N + 1)- and N -

electron response function by the Coulomb kernel according

to

�X̃+(iω,q) = F
1/2

H (q)�X+(iω,q)F
1/2

H (q). (44)

For the matrix elements of �X+ see the Supplemental

Material [30].

In the limit of an infinite system Eqs. (42) and (43) lead to

the same band gaps as does the direct calculation from total

energy differences discussed in the previous section. Equations

(42) and (43) were used in Ref. [20] to calculate the band gaps

of carbon and silicon. In Sec. III B we show how band gaps

calculated directly from total energy differences and by using

Eqs. (42) and (43) converge to each other with increasing

numbers of k points, i.e., in the limit of infinite systems. For

the relation of Eqs. (42) and (43) to the GW method see

Refs. [20] and [42].

III. RESULTS

A. Band gaps of prototypical semiconductors

We have calculated fundamental band gaps for a number

of prototypical semiconductors and insulators with the plane-

wave pseudopotential (PP) program MCEXX [21] and with the

all-electron full-potential linearized augmented plane-wave
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TABLE I. Comparison of FLAPW and PP dRPA gaps (in eV)

with experiment.

FLAPW PP

PBE PBE EXX Exp.

Si 1.24 1.22 1.34 1.17

BP 2.11 2.14 2.23 2.10

AlAs 2.39 2.40 2.54 2.23

GaP 2.39 2.70 2.82 2.35

SiC 2.56 2.54 2.70 2.42

AlP 2.60 2.77 2.93 2.50

C 5.87 5.91 6.12 5.911

BN 6.65 6.68 6.86 6.40

NaCl 8.65 9.26 9.54 8.50

Ar 13.95 14.31 14.47 14.15

MARE 3.3% 5.9% 10.9%

MRE 2.9% 5.9% 10.9%

MARE2 3.6% 4.3% 9.4%

MRE2 2.9% 4.3% 9.4%

1Corrected for effects of zero-point vibrations by 0.41 eV according

to Ref. [43].
2Errors for only Si, SiC, AlP, C, BN, and Ar as in Table III.

(FLAPW) package FLEUR [22,23]. Band gaps as well as

their contributions were extrapolated to an infinite number

of k points. Note that for the correlation contribution �EdRPA
c

only the occupied valence electrons are taken into account in

the all-electron calculations. The core states are considered

in the calculation of the KS orbitals and eigenvalues and in

the calculation of matrix elements of v̂NL
x , ˆ̃vx , and ˆ̃vc. See

Supplemental Material for further technical details [30].

In Table I dRPA band gaps obtained according to Eq. (23)

with orbitals and eigenvalues from PBE and EXX calcula-

tions are listed. Irrespective of the applied functional in the

underlying KS calculation, the dRPA gap lies very close

to the experimental result. The band gaps based on EXX

orbitals and eigenvalues are systematically larger than those

from PBE input data. Hence they are in somewhat less good

agreement with the experimental values. The band gaps from

the pseudopotential and the all-electron code agree quite well.

The larger deviations for NaCl and GaP are due to the inclusion

of the Na 2s and 2p and Ga 3d semicore orbitals in the

calculation of �EdRPA
c with the FLAPW program. We also

considered the somewhat critical band gap of wurtzite ZnO

[44,45] and obtained a value of 3.27 eV (with PBE orbitals

from FLAPW) in reasonable agreement with the experimental

value of 3.6 eV which has been corrected for lattice effects

[46,47].

The individual contributions �ε, �x , and �EdRPA
c to the

band gap are shown in Table II for the case of EXX orbitals and

eigenvalues as input data (for the PBE case see Supplemental

Material [30]). It is evident that �x and �EdRPA
c have opposite

sign and to some extent cancel each other. (The contributions

�ε, �x , and �EdRPA
c of Table II do not exactly add up

to the band gaps of Table I because they were individually

extrapolated to infinite numbers of k points; see Supplemental

Material [30].)

TABLE II. Different contributions to the dRPA band gap (in eV)

using EXX orbitals and eigenvalues.

�ε �x �EdRPA
c

Si 1.10 4.46 − 4.18

BP 1.74 5.38 − 4.89

AlAs 2.19 4.62 − 4.27

GaP 2.32 4.89 − 4.35

SiC 2.40 5.59 − 5.41

AlP 2.34 5.01 − 4.42

C 4.71 7.32 − 5.91

BN 5.58 7.78 − 6.50

NaCl 6.42 7.09 − 3.98

Ar 9.71 8.55 − 3.80

For comparison Table III lists band gaps obtained with the

GW method. Errors with respect to experimental values here

range from a mean absolute relative error (MARE) of 2.2%

to 9.9% depending on the level of self-consistency in the GW

step and on the functionals used to generate the underlying

orbitals and eigenvalue. The deviations of 3.6% (all-electron)

and 4.3% (pseudopotential) of the dRPA band gaps in case of

PBE orbitals and eigenvalues thus are competitive.

B. Equivalence of different ACFD approaches for band gaps

In Fig. 1 deviations of the correlation contributions to

the ionization potential, electron affinity, and band gap

calculated in different ways are shown as a function of the

number of k points for GaP. (See Supplemental Material

[30] for corresponding data for Si.) On the one hand,

Fig. 1 displays deviations between correlation contributions

calculated according to the approach of Ref. [20], Eqs. (40) and

(43) (without invoking approximations like the plasmon-pole

approximation), and those directly calculated from correlation

energies obtained from the response matrices of the N -,

(N − 1)-, and (N + 1)-electron system [(blue) open circles].

On the other hand, deviations due to the perturbative treatment

of the eigenvalues of the response matrix of the (N − 1)- and

(N + 1)-electron system, Eqs. (32) and (34), in comparison to

the direct calculation are shown [(red) solid circles]. Figure 1

TABLE III. GW band gaps (in eV) at different levels of self-

consistency using PBE or HSE03 orbitals and eigenvalues as input.

Data are taken from Refs. [4,5].

PBE reference HSE03 reference

G0W0 GW0 GW G0W0 GW0 GW

Si 1.12 1.20 1.28 1.32 1.35 1.37

SiC 2.27 2.43 2.64 2.60 2.68 2.76

AlP 2.44 2.59 2.77 2.69 2.77 2.86

C 5.50 5.68 5.99 5.64 5.92 6.08

BN 6.10 6.35 6.73 6.54 6.66 6.85

Ar 13.28 13.87 14.65 13.70 14.10 14.70

MARE 5.1% 2.2% 6.6% 6.3% 6.9% 9.9%

MRE − 5.1% − 0.01% 6.6% 3.7% 6.8% 9.9%
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FIG. 1. Deviations of correlation contributions to electron affin-

ity, ionization potential, and band gap calculated by different

approaches with the number of k points for GaP. Displayed is

the difference of the correlation contributions calculated with the

approach of Ref. [20] and an approach using perturbation theory

for the eigenvalues of the response matrices of the (N − 1)- and

(N + 1)-electron system to a direct calculation of the correlation

contributions from total energies as described in Sec. II B.

clearly shows that the three approaches converge to the same

result with increasing number of k points.

IV. CONCLUDING REMARKS

It is highly promising that approaches for fundamental

bands gaps based on the adiabatic-connection fluctuation-

dissipation (ACFD) theorem yield results with an accuracy

comparable to corresponding GW results even if they rely on

the simplest ansatz, the dRPA. It is known that total electronic

energies can be drastically improved by going beyond the

dRPA [16–18]. Therefore the strategy of calculating band gaps

by total energy differences obtained with the ACFD theorem

has the potential to be further improved by going beyond the

dRPA, e.g., by including suitable exchange-correlation kernels

in the construction of the response functions appearing in

the ACFD theorem [48]. If the dRPA correlation potential

was taken into account in addition to the exact KS exchange

potential then a self-consistent method would result and the

energies added in Eqs. (21) and (22) to −εH and −εL

to obtain IP and EA, respectively, would equal potential

adjustors introduced in Ref. [9] to fix the energetic position of

exchange-correlation potentials.

Finally we note that the considered methods can be easily

implemented in KS codes for periodic systems that give

access to the dRPA correlation energy. Very little additional

computational effort is then required to calculate fundamental

band gaps in addition to the dRPA correlation energy of the

neutral system. Thus band gaps can be obtained almost for free

once the KS ground state energy including dRPA correlation

has been calculated.
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