000817964 001__ 817964
000817964 005__ 20220930130104.0
000817964 0247_ $$2doi$$a10.3390/cancers7010287
000817964 0247_ $$2Handle$$a2128/17155
000817964 0247_ $$2pmid$$apmid:25635760
000817964 0247_ $$2WOS$$aWOS:000209951000010
000817964 0247_ $$2altmetric$$aaltmetric:3212484
000817964 037__ $$aFZJ-2016-04543
000817964 041__ $$aEnglish
000817964 082__ $$a610
000817964 1001_ $$0P:(DE-HGF)0$$aHussein, Amr$$b0
000817964 245__ $$aFDG-PET Response Prediction in Pediatric Hodgkin’s Lymphoma: Impact of Metabolically Defined Tumor Volumes and Individualized SUV Measurements on the Positive Predictive Value
000817964 260__ $$aBasel$$bMDPI$$c2015
000817964 3367_ $$2DRIVER$$aarticle
000817964 3367_ $$2DataCite$$aOutput Types/Journal article
000817964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548679473_6660
000817964 3367_ $$2BibTeX$$aARTICLE
000817964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817964 3367_ $$00$$2EndNote$$aJournal Article
000817964 520__ $$aBackground: In pediatric Hodgkin’s lymphoma (pHL) early response-to-therapy prediction is metabolically assessed by (18)F-FDG PET carrying an excellent negative predictive value (NPV) but an impaired positive predictive value (PPV). Aim of this study was to improve the PPV while keeping the optimal NPV. A comparison of different PET data analyses was performed applying individualized standardized uptake values (SUV), PET-derived metabolic tumor volume (MTV) and the product of both parameters, termed total lesion glycolysis (TLG); Methods: One-hundred-eight PET datasets (PET1, n = 54; PET2, n = 54) of 54 children were analysed by visual and semi-quantitative means. SUVmax, SUVmean, MTV and TLG were obtained the results of both PETs and the relative change from PET1 to PET2 (Δ in %) were compared for their capability of identifying responders and non-responders using receiver operating characteristics (ROC)-curves. In consideration of individual variations in noise and contrasts levels all parameters were additionally obtained after threshold correction to lean body mass and background; Results: All semi-quantitative SUV estimates obtained at PET2 were significantly superior to the visual PET2 analysis. However, ΔSUVmax revealed the best results (area under the curve, 0.92; p < 0.001; sensitivity 100%; specificity 85.4%; PPV 46.2%; NPV 100%; accuracy, 87.0%) but was not significantly superior to SUVmax-estimation at PET2 and ΔTLGmax. Likewise, the lean body mass and background individualization of the datasets did not impove the results of the ROC analyses; Conclusions: Sophisticated semi-quantitative PET measures in early response assessment of pHL patients do not perform significantly better than the previously proposed ΔSUVmax. All analytical strategies failed to improve the impaired PPV to a clinically acceptable level while preserving the excellent NPV.
000817964 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000817964 588__ $$aDataset connected to CrossRef
000817964 7001_ $$0P:(DE-HGF)0$$aFurth, Christian$$b1
000817964 7001_ $$0P:(DE-HGF)0$$aSchönberger, Stefan$$b2
000817964 7001_ $$0P:(DE-HGF)0$$aHundsdoerfer, Patrick$$b3
000817964 7001_ $$0P:(DE-HGF)0$$aSteffen, Ingo$$b4
000817964 7001_ $$0P:(DE-HGF)0$$aAmthauer, Holger$$b5
000817964 7001_ $$0P:(DE-HGF)0$$aMüller, Hans-Wilhelm$$b6
000817964 7001_ $$0P:(DE-Juel1)132313$$aHautzel, Hubertus$$b7$$eCorresponding author
000817964 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers7010287$$gVol. 7, no. 1, p. 287 - 304$$n1$$p287 - 304$$tCancers$$v7$$x2072-6694$$y2015
000817964 8564_ $$uhttps://juser.fz-juelich.de/record/817964/files/cancers-07-00287.pdf$$yOpenAccess
000817964 8564_ $$uhttps://juser.fz-juelich.de/record/817964/files/cancers-07-00287.gif?subformat=icon$$xicon$$yOpenAccess
000817964 8564_ $$uhttps://juser.fz-juelich.de/record/817964/files/cancers-07-00287.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000817964 8564_ $$uhttps://juser.fz-juelich.de/record/817964/files/cancers-07-00287.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000817964 8564_ $$uhttps://juser.fz-juelich.de/record/817964/files/cancers-07-00287.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000817964 8564_ $$uhttps://juser.fz-juelich.de/record/817964/files/cancers-07-00287.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000817964 8767_ $$92015-01-21$$d2015-01-23$$eAPC$$jZahlung erfolgt$$pcancers-69486$$zCHF 720,-
000817964 909CO $$ooai:juser.fz-juelich.de:817964$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000817964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000817964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132313$$aForschungszentrum Jülich$$b7$$kFZJ
000817964 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000817964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817964 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000817964 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000817964 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000817964 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000817964 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000817964 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000817964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817964 9201_ $$0I:(DE-Juel1)KME-20110218$$kKME$$lKME$$x0
000817964 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000817964 980__ $$ajournal
000817964 980__ $$aVDB
000817964 980__ $$aI:(DE-Juel1)KME-20110218
000817964 980__ $$aI:(DE-Juel1)INM-4-20090406
000817964 980__ $$aAPC
000817964 980__ $$aUNRESTRICTED
000817964 9801_ $$aAPC
000817964 9801_ $$aFullTexts
000817964 981__ $$aI:(DE-Juel1)IBOC-20090406