000817987 001__ 817987
000817987 005__ 20250129094249.0
000817987 0247_ $$2doi$$a10.1021/acs.inorgchem.6b00227
000817987 0247_ $$2ISSN$$a0020-1669
000817987 0247_ $$2ISSN$$a1520-510X
000817987 0247_ $$2WOS$$aWOS:000378369900028
000817987 0247_ $$2altmetric$$aaltmetric:8465295
000817987 0247_ $$2pmid$$apmid:27258790
000817987 037__ $$aFZJ-2016-04563
000817987 082__ $$a540
000817987 1001_ $$0P:(DE-HGF)0$$aOjwang, Dickson O.$$b0
000817987 245__ $$aStructure Characterization and Properties of K-Containing Copper Hexacyanoferrate
000817987 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2016
000817987 3367_ $$2DRIVER$$aarticle
000817987 3367_ $$2DataCite$$aOutput Types/Journal article
000817987 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472728425_15965
000817987 3367_ $$2BibTeX$$aARTICLE
000817987 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000817987 3367_ $$00$$2EndNote$$aJournal Article
000817987 520__ $$aCopper hexacyanoferrate, CuII[FeIII(CN)6]2/3·nH2O, was synthesized, and varied amounts of K+ ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as CuII[FeIII(CN)6]2/3·nH2O + 2x/3K+ + 2x/3e– ↔ K2x/3CuII[FeIIxFeIII1–x(CN)6]2/3·nH2O. Infrared, Raman, and Mössbauer spectroscopy studies show that FeIII is continuously reduced to FeII with increasing x, accompanied by a decrease of the a-axis of the cubic Fm3̅m unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction, ∼20% of the FeIII, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of ∼26 wt % upon heating to 180 °C, above which the structure starts to decompose. The crystal structures of CuII[FeIII(CN)6]2/3·nH2O and K2/3Cu[Fe(CN)6]2/3·nH2O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)6 groups are vacant, and the octahedron around CuII is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the −Cu–N–C–Fe– framework. The K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K+ ions.
000817987 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000817987 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000817987 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000817987 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000817987 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000817987 588__ $$aDataset connected to CrossRef
000817987 7001_ $$0P:(DE-HGF)0$$aGrins, Jekabs$$b1
000817987 7001_ $$0P:(DE-HGF)0$$aWardecki, Dariusz$$b2
000817987 7001_ $$0P:(DE-HGF)0$$aValvo, Mario$$b3
000817987 7001_ $$0P:(DE-HGF)0$$aRenman, Viktor$$b4
000817987 7001_ $$0P:(DE-HGF)0$$aHäggström, Lennart$$b5
000817987 7001_ $$0P:(DE-HGF)0$$aEricsson, Tore$$b6
000817987 7001_ $$0P:(DE-HGF)0$$aGustafsson, Torbjörn$$b7
000817987 7001_ $$0P:(DE-Juel1)159434$$aMahmoud, Abdelfattah$$b8
000817987 7001_ $$0P:(DE-HGF)0$$aSvensson, Gunnar$$b9$$eCorresponding author
000817987 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b10
000817987 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.6b00227$$gVol. 55, no. 12, p. 5924 - 5934$$n12$$p5924 - 5934$$tInorganic chemistry$$v55$$x1520-510X$$y2016
000817987 8564_ $$uhttps://juser.fz-juelich.de/record/817987/files/acs.inorgchem.6b00227.pdf$$yRestricted
000817987 8564_ $$uhttps://juser.fz-juelich.de/record/817987/files/acs.inorgchem.6b00227.gif?subformat=icon$$xicon$$yRestricted
000817987 8564_ $$uhttps://juser.fz-juelich.de/record/817987/files/acs.inorgchem.6b00227.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000817987 8564_ $$uhttps://juser.fz-juelich.de/record/817987/files/acs.inorgchem.6b00227.jpg?subformat=icon-180$$xicon-180$$yRestricted
000817987 8564_ $$uhttps://juser.fz-juelich.de/record/817987/files/acs.inorgchem.6b00227.jpg?subformat=icon-640$$xicon-640$$yRestricted
000817987 8564_ $$uhttps://juser.fz-juelich.de/record/817987/files/acs.inorgchem.6b00227.pdf?subformat=pdfa$$xpdfa$$yRestricted
000817987 909CO $$ooai:juser.fz-juelich.de:817987$$pVDB
000817987 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich$$b10$$kFZJ
000817987 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000817987 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000817987 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000817987 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000817987 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000817987 9141_ $$y2016
000817987 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000817987 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000817987 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000817987 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2015
000817987 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000817987 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000817987 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000817987 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000817987 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000817987 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000817987 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000817987 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000817987 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000817987 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000817987 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000817987 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000817987 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000817987 980__ $$ajournal
000817987 980__ $$aVDB
000817987 980__ $$aUNRESTRICTED
000817987 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000817987 980__ $$aI:(DE-Juel1)PGI-4-20110106
000817987 980__ $$aI:(DE-82)080009_20140620
000817987 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000817987 981__ $$aI:(DE-Juel1)PGI-4-20110106