000818075 001__ 818075
000818075 005__ 20210129224101.0
000818075 0247_ $$2doi$$a10.17815/CD.2016.4
000818075 0247_ $$2Handle$$a2128/12344
000818075 0247_ $$2altmetric$$aaltmetric:12229241
000818075 037__ $$aFZJ-2016-04609
000818075 082__ $$a380
000818075 1001_ $$0P:(DE-HGF)0$$aEzaki, Takahiro$$b0
000818075 245__ $$aInflow Process of Pedestrians to a Confined Space
000818075 260__ $$aKöln$$bInstitut für Theoretische Physik$$c2016
000818075 3367_ $$2DRIVER$$aarticle
000818075 3367_ $$2DataCite$$aOutput Types/Journal article
000818075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1474453812_32723
000818075 3367_ $$2BibTeX$$aARTICLE
000818075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000818075 3367_ $$00$$2EndNote$$aJournal Article
000818075 520__ $$aTo better design safe and comfortable urban spaces, understanding the nature of human crowd movement is important. However, precise interactions among pedestrians are difficult to measure in the presence of their complex decision-making processes and many related factors. While extensive studies on pedestrian flow through bottlenecks and corridors have been conducted, the dominant mode of interaction in these scenarios may not be relevant in different scenarios. Here, we attempt to decipher the factors that affect human reactions to other individuals from a different perspective. We conducted experiments employing the inflow process in which pedestrians successively enter a confined area (like an elevator) and look for a temporary position. In this process, pedestrians have a wider range of options regarding their motion than in the classical scenarios; therefore, other factors might become relevant. The preference of location is visualized by pedestrian density profiles obtained from recorded pedestrian trajectories. Non-trivial patterns of space acquisition, e.g., an apparent preference for positions near corners, were observed. This indicates the relevance of psychological and anticipative factors beyond the private sphere, which have not been deeply discussed so far in the literature on pedestrian dynamics. From the results, four major factors, which we call flow avoidance, distance cost, angle cost, and boundary preference, were suggested. We confirmed that a description of decision-making based on these factors can give a rise to realistic preference patterns, using a simple mathematical model. Our findings provide new perspectives and a baseline for considering the optimization of design and safety in crowded public areas and public transport carriers.
000818075 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000818075 588__ $$aDataset connected to CrossRef
000818075 7001_ $$0P:(DE-HGF)0$$aOhtsuka, Kazumichi$$b1
000818075 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b2$$eCorresponding author
000818075 7001_ $$0P:(DE-Juel1)132064$$aBoltes, Maik$$b3$$ufzj
000818075 7001_ $$0P:(DE-HGF)0$$aYanagisawa, Daichi$$b4
000818075 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b5$$ufzj
000818075 7001_ $$0P:(DE-HGF)0$$aSchadschneider, Andreas$$b6
000818075 7001_ $$0P:(DE-HGF)0$$aNishinari, Katsuhiro$$b7
000818075 773__ $$0PERI:(DE-600)2854776-7$$a10.17815/CD.2016.4$$gVol. 1, p. A4$$pA4$$tCollective dynamics$$v1$$x2366-8539$$y2016
000818075 8564_ $$uhttps://juser.fz-juelich.de/record/818075/files/5-79-1-PB.pdf$$yOpenAccess
000818075 8564_ $$uhttps://juser.fz-juelich.de/record/818075/files/5-79-1-PB.gif?subformat=icon$$xicon$$yOpenAccess
000818075 8564_ $$uhttps://juser.fz-juelich.de/record/818075/files/5-79-1-PB.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000818075 8564_ $$uhttps://juser.fz-juelich.de/record/818075/files/5-79-1-PB.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000818075 8564_ $$uhttps://juser.fz-juelich.de/record/818075/files/5-79-1-PB.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000818075 8564_ $$uhttps://juser.fz-juelich.de/record/818075/files/5-79-1-PB.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000818075 909CO $$ooai:juser.fz-juelich.de:818075$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000818075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b2$$kFZJ
000818075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132064$$aForschungszentrum Jülich$$b3$$kFZJ
000818075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b5$$kFZJ
000818075 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000818075 9141_ $$y2016
000818075 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000818075 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000818075 920__ $$lyes
000818075 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000818075 980__ $$ajournal
000818075 980__ $$aVDB
000818075 980__ $$aUNRESTRICTED
000818075 980__ $$aI:(DE-Juel1)JSC-20090406
000818075 9801_ $$aFullTexts