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Modeling a spheroidal microswimmer and
cooperative swimming in a narrow slit†

Mario Theers,a Elmar Westphal,b Gerhard Gomppera and Roland G. Winkler*a

We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity

modes. This model is analytically solvable and reduces to Lighthill’s and Blake’s spherical squirmer model

in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a

spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the

multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two

spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim

cooperatively forming a wedge-like conformation with a small constant angle.

1 Introduction

Living matter exhibits a broad spectrum of unique phenomena

which emerge as a consequence of its active constituents. Examples

of such systems range from the macroscopic scale of flocks of

birds and mammalian herds to the microscopic scale of bacterial

suspensions.1,2 Specifically, active systems exhibit remarkable non-

equilibrium phenomena and emergent behavior like swarming,3–7

turbulence,6 and activity-induced clustering and phase

transitions.8–21 The understanding of these collective phenomena

requires the characterization of the underlying physical inter-

action mechanisms. Experiments and simulations indicate that

shape-induced interactions, such as inelastic collisions between

elongated objects or of active particles with surfaces lead to

clustering, collectivemotion, and surface-induced aggregation.6,22–24

For micrometer-size biological unicellular swimmers, e.g., bacteria

(E. coli), algae (Chlamydomonas), spermatozoa, or protozoa

(Paramecium), hydrodynamic interactions are considered to be

important for collective effects and determine their behavior

adjacent to surfaces.1,25–30

Generic models, which capture the essential swimming

aspects, are crucial in theoretical studies of microswimmers.

On the one hand, they help to unravel the relevant interaction

mechanisms and, on the other hand, allow for the study of

sufficiently large systems. A prominent example is the squirmer

model introduced by Lighthill31 and revised by Blake.32 Originally,

it was intended as a model for ciliated microswimmers,

such as Paramecia. Nowadays, it is considered as a generic model

for a broad class of microswimmers, ranging from diffusiophoretic

particles33–35 to biological cells and has been applied to

study collective effects in bulk,36–42 at surfaces,36,43,44 and in a

narrow slit.20

In its simplest form, a squirmer is represented as a spherical

rigid colloid with a prescribed surface velocity.31,32,38 Restricting

the surface velocity to be tangential, the spherical squirmer is

typically characterized by two modes accounting for its swimming

velocity and its force-dipole. The latter distinguishes between

pushers, pullers, and neutral squirmers. The assumption of a

spherical shape is adequate for swimmers like Volvox, however,

the shape of bacteria such as E. coli or the time-averaged shape

of cells such as Chlamydomonas is nonspherical. Hence, an

extension of the squirmer concept to spheroidal objects is

desirable. In 1977, Keller and Wu proposed a generalization of

the squirmer model to a prolate-spheroidal shape, which resembles

real biological microswimmers such as Tetrahymenapyriformis,

Spirostomum ambiguum, and Paramecium multimicronucleatum.45

However, that squirmer model accounts for the swimming mode

only and does not include a force-dipole mode. This is unfortunate,

since the force-dipole mode determines swimmer–swimmer

and swimmer–wall interactions.25,37,39,46 A route to incorporate

the force-dipole mode into the spheroidal squirmer model was

proposed in ref. 44. However, to the best of our knowledge, the

resulting hydrodynamic model is not solvable analytically. In

this article, we propose an alternative model for a spheroidal

squirmer, taking into account both, a swimming and a force-

dipole mode. The major advantage of our approach is that the

flow field can be determined analytically (cf. Fig. 1).

Various mesoscale simulation techniques have been applied

to study the dynamics of squirmers embedded in a fluid, comprising

Stokesian dynamics,39,40,43 the boundary-element method,38,44,46–48

the multiparticle collision dynamics (MPC) approach,20,37,49
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lattice Boltzmann simulations,36,41,50 the smoothed profile

method,42 and the force-coupling approach.51 In the following,

we will apply the MPCmethod. MPC is a particle-based simulation

technique which incorporates thermal fluctuations,52–54 provides

hydrodynamic correlations,55,56 and is easily coupled with other

simulation techniques such as molecular dynamics simulations

for embedded particles.53,54 The method has successfully

been applied in various studies of active systems underlining

the importance of hydrodynamic interactions for micro-

swimmers.1,20,24,28,37,53,57–65

Here, we implement our spheroidal squirmer model in

MPC. More specifically, we study the resulting flow field and

compare it with the theoretical prediction. Moreover, we present

results for the cooperative swimming behavior of two spheroidal

squirmers in a narrow slit. Two pullers exhibit a long-time

stable configuration, where they swim together in a wedge-like

conformation with a constant small angle due to the hydro-

dynamic interaction between the anisotropic squirmers as well

as squirmers and walls. The cooperative and collective swimming

motion of spheroidal squirmers in Stokes flow has been addressed

in ref. 47 by an adopted boundary-element method. This approach

neglects thermal fluctuations and tumbling of the squirmers

completely; only hydrodynamic and excluded-volume inter-

actions determine the squirmer motion. In contrast, our simulation

approach includes thermal fluctuations, which affects the

stability of the cooperative swimming motion due to the rotational

diffusion of a spheroid.

2 Hydrodynamic model of a spheroidal
squirmer
2.1 Spheroid geometry

We describe a nonspherical squirmer as a prolate spheroidal

rigid body with a prescribed surface velocity usq. In Cartesian

coordinates (x, y, z), the surface equation of a spheroid, or

ellipsoid of revolution, is

(x2 + y2)/bx
2 + z2/bz

2 = 1, (1)

with bz and bx the semi-major and semi-minor axis, respectively,

and bz Z bx (cf. Fig. 2). We denote half of the focal length by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bz2 � bx2
p

, which yields the eccentricity e = c/bz. Furthermore,

we define a swimmer diameter as s = 2bz. In terms of prolate

(bz4 bx) spheroidal coordinates (z, t, j), the Cartesian coordinates

are given by

x ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

cosj;

y ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

sinj;

z ¼ ctz;

(2)

where �1r zr 1, 1r trN, and 0rjr 2p. All points with

t = t0 � e�1 lie on the spheroid’s surface. The intersection of the

spheroid and a meridian plane, where j is constant, is an

ellipse. The normal n and tangent s to this ellipse are given by

the unit vectors et and �ez, respectively, which follow by partial

derivative of eqn (2) with respect to the coordinates z and t.

For bx = bz, the spheroid becomes a sphere. The spherical

coordinates

(x, y, z)T = r(sin y cosj, sin y sinj, cos y)T (3)

are obtained from eqn (2) for t-N, ct = r, and z = cos y. In this

limit, the unit vectors turn into et- er and ez- �ey (cf. Fig. 2).

The Lamé metric coefficients for prolate spheroidal coordinates

are hz ¼ c t2 � z2
� �

1
2 1� z2
� ��1

2, ht ¼ c t2 � z2
� �

1
2 t2 � 1
� ��1

2, and

hj ¼ c t2 � 1
� �

1
2 1� z2
� �

1
2.

2.2 Flow field

The squirmer is immersed in an incompressible low-Reynolds-

number fluid, which is described by the incompressible Stokes

equations

ZDv � rp = 0, r�v = 0. (4)

Here, v(r) is the fluid velocity field, p(r) the pressure field at

the position r, and Z the viscosity. In an axisymmetric flow,

Fig. 1 Flow field of a spheroidal puller with b = 3, (a) in the laboratory

frame, and (b) in the body-fixed frame. The magnitude of the velocity field

is color coded logarithmically.

Fig. 2 Sketch of normal and tangent vectors of a spheroidal (left) and

spherical (right) squirmer. In the squirmer model, self-propulsion (in

z-direction) is achieved by a prescribed tangential surface velocity in

direction of the tangent vector s.
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the velocity field can be expressed by the stream function

C as66

vðz; t;jÞ ¼ curl
1

hj
Cðt; zÞej

� �

: (5)

The stream function itself satisfies the equation66

E4C = 0, (6)

with the operator67

E2 ¼ 1

c2 t2 � z2ð Þ t2 � 1
� � @2

@t2
þ 1� z2
� � @2

@z2

� �

: (7)

Each function C in the kernel of E2 can be represented as67

Cðt; zÞ ¼
X

1

n¼0

X

4

i¼1

cinY
i
nðt; zÞ; (8)

with constants cin and the functions

Y1
n(t,z) = Gn(t)Gn(z), Y2

n(t,z) = Gn(t)Hn(z),

Y3
n(t,z) = Hn(t)Gn(z), Y4

n(t,z) = Hn(t)Hn(z).

Here, Gn(x) and Hn(x) are Gegenbauer functions of the first

and second kind, respectively (see Appendix B). The velocity

components follow from the stream function via66

vt ¼
1

hzhj

@C

@z
¼ c�2 t2 � 1

� �� 1
2 t2 � z2
� �� 1

2
@C

@z
; (9)

vz ¼ � 1

hthj

@C

@t
¼ �c�2 1� z2

� �� 1
2 t2 � z2
� �� 1

2
@C

@t
: (10)

An important feature of a squirmer is the hydrodynamic

boundary condition at its surface, which demands v(r) = usq.

For the squirming velocity usq we propose

usq = �B1(s�ez)s � B2z(s�ez)s (11)

= �B1(1 + bz)(s�ez)s (12)

¼ �B1t0 1� z2
� �

1
2 t0

2 � z2
� ��1

2ð1þ bzÞez: (13)

Here, s is the tangent vector, ez = (0, 0, 1)T is the unit vector in

z-direction, B1 and B2 are the two surface velocity modes, and

b = B2/B1 (cf. Fig. 2). B1 determines the swimming velocity,

while the B2 term introduces a force-dipole, or pusher (B2 o 0)

and puller (B2 4 0) mode. Note that the spherical squirmer

introduced by Lighthill and Blake with modes B1 and B2
31,32

is recovered for the spherical limit of a spheroid, where

z- cos(y) = n�ez.
For B2 = 0, this model of a spheroidal squirmer was already

introduced and analysed in ref. 45 and 68. An additional

force-dipole mode has been introduced in ref. 44 and 47 as

usq(z) = �B1s�ez(1 + bn�ez)s. However, we prefer the squirming

velocity introduced in eqn (12), since it yields an analytically

solvable boundary value problem for the Stokes equation. The

two approaches provide a somewhat different flow field in the

vicinity of the squirmer, but both yield the model of Lighthill

and Blake in the limit of zero eccentricity.

In the swimmer’s rest frame, and with eqn (12), the boundary

value problem becomes

Cðt; zÞ ! 1

2
U0c

2 t2 � 1
� �

1� z2
� �

for t ! 1; (14)

C(t0,z) = 0 for all z, (15)

@C

@t

�

�

�

�

t¼t0

¼ B1 þ B2zð Þc2t0 1� z2
� �

for all z: (16)

Eqn (14) implies a constant background flow v = �U0ez
infinitely far from the squirmer, eqn (15) guarantees vt = 0 at

the spheroid surface, and eqn (16) demands vz = usq(z)�ez. Due
to linearity of the Stokes stream function eqn (6), we can solve

this boundary value problem for B2 = 0 first, which yields the

stream function C1. Subsequently we solve the problem

C(t,z) converges for t-N, (17)

C(t0,z) = 0 for all z, (18)

@C

@t

�

�

�

�

t¼t0

¼ B2c
2t0ð1� z2Þz for all z: (19)

Eqn (17) imposes a vanishing velocity field infinitely far from

the squirmer, eqn (18) again guarantees vt = 0 at the spheroid

surface, and eqn (19) demands vz = usq(z,B1 = 0)�ez. We denote the

solution of the problem eqn (17)–(19) byC2. Finally, C = C1 +C2

solves the initial problem (14)–(16) for arbitrary B1 and B2.

The boundary value problem eqn (14)–(16) for B2 = 0 can be

solved by the ansatz

C1(t,z) = a1G2(t)G2(z) + a2H2(t)G2(z) + a3t(1 � z2). (20)

Here, the third term is found by the separation ansatz C(t,z) =

g(t)(1 � z2) for eqn (6). Eqn (14) directly yields a1 = �2U0c
2. The

remaining coefficients a2 and a3 are determined by eqn (15) and

(16), keeping in mind that B2 = 0. This yields

a2 ¼ 2c2
U0 t0

2 þ 1
� �

� 2B1t0
2

t02 þ 1ð Þ coth �1t0 � t0
; (21)

a3 ¼ c2
B1t0 t0 � t0

2 � 1
� �

coth �1t0
� �

�U0

t02 þ 1ð Þ coth �1t0 � t0
: (22)

The boundary value problem eqn (17)–(19) can be solved by

the ansatz

C2(t,z) = a4G3(t)G3(z) + a5H3(t)G3(z) + a6z(1 � z2).

(23)

As before, the third term follows by a separation ansatz C(t,z) =

g(t)z(1 � z2) for eqn (6). Eqn (17) yields a4 = 0. The coefficients

a5 and a6 are determined by eqn (18) and (19) such that

a5 ¼ c2
4B2t0

3t0 þ 1� 3t02ð Þ coth �1t0
; (24)

a6 ¼ c2B2t0
2=3� t0

2 þ t0 t0
2 � 1

� �

coth �1t0

3t0 þ 1� 3t02ð Þ coth �1t0
: (25)
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The total stream function C = C1 + C2 can be transformed to

the laboratory frame (cf. Fig. 1) by adding the background flow

v = U0ez, which yields

Clab ¼ C� 1

2
U0c

2 t2 � 1
� �

1� z2
� �

¼ a2H2ðtÞG2ðzÞ þ a3t 1� z2
� �

þ a5H3ðtÞG3ðzÞ þ a6z 1� z2
� �

:

(26)

The force on the spheroid by the fluid follows from a multipole

expansion,66,69 with a Stokeslet as the dominating contribution far

away from a swimmer. Hence, for r-N the stream functionClab

has to be equal to the stream function of a Stokeslet,66 namely

CF ¼ Fz

8pZ

�r2

r
; (27)

and, thus, the force on the spheroidal squirmer is given by66

Fz ¼ 8pZ lim
r!1

rClab

�r2
¼ 8pZ

a3

c
; (28)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

and �r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. As expected, C2

does not contribute to the force, since it assumes a constant

value at infinity. Since a swimmer must be force free, Fz = 0,

which implies a3 = 0. Then, eqn (22) yields the swimming

velocity of the squirmer (t0 = 1/e)

U0 = B1t0(t0 � (t0
2 � 1)coth�1t0), (29)

which was already found by Keller and Wu for the case B2 = 0.45

As a consequence, a2 in eqn (22) simply becomes a2 =

2B1c
2t0(t0

2 � 1). Examples of fluid velocity fields of a spheroidal

squirmer are presented in Fig. 1 and 3.

Far field. The far field of a cylindrically symmetricmicroswimmer

in terms of a multipole expansion is presented in ref. 48 and the ESI

of ref. 70. To obtain the far field expansion of our spheroidal

squirmer, we expand the stream function, eqn (26), in powers of

1/t. Similarly, we determine the stream functions of the first few

singularity solutions appearing in the multipole expansion (force

dipole, force quadrupole, source dipole, rotlet dipole, etc.) and Taylor

expand them in 1/t. Note that we can omit the non-axisymmetric

singularity solutions of themultipole expansion like the rotlet dipole

(vRD), which is cylindrically symmetric but not axisymmetric

(vRD�eja 0). Equating the coefficients of (1/t)n for n = 0, 1, 2, we find

that the squirmer is well described in the far field by the flow fields

of a force dipole, a source dipole, and a source quadrupole

v(r) = kFDvFD(r) + kSDvSD(r) + kSQvSQ(r) + O(r�5), (30)

where

vFDðrÞ ¼ r

r3
3z2

r2
� 1

� �

; (31)

vSDðrÞ ¼ 1

r3
�ez þ

3zr

r2

� �

; (32)

vSQðrÞ ¼ 3

r4
5z2r

r3
� 2zez þ r

r

� �

; (33)

which decay like r�2, r�3, and r�4 for large r, respectively.48 The

multipole coefficients are

kFD = �a6, (34)

kSD ¼ �c
a2

6
¼ �B1

3
c3t0 t0

2 � 1
� �

; (35)

kSQ ¼ �c2
a5

90
; (36)

with the coefficients a5 and a6 of eqn (24) and (25). The values of

the multipole coefficients in the spherical limit (bz - bx � R,

where R is the radius) follow from the above coefficients for

t0-N, c- 0, and ct0 = R as kFD =�B2R
2/2, kSD =�B1R

3/3, and

kSQ = B2R
4/6 as expected for a spherical squirmer.71

3 Multiparticle collision dynamics

Multiparticle collision dynamics (MPC) is a stochastic, particle-

based mesoscale hydrodynamic simulation method.54 Thereby,

a fluid is modeled by N point particles with equal mass m,

undergoing subsequent streaming and collision steps. In the

streaming step, the particle positions ri, i = 1,. . .,N, are updated

according to

ri(t + h) = ri(t) + hvi(t), (37)

where vi are the particle velocities and h is denoted as collision

time step. In the subsequent collision step, the particle velo-

cities are changed by a stochastic process, which mimics

internal fluid interactions. In order to define the local collision

environment, particles are sorted into cells of a cubic lattice

with lattice constant a. Different realizations for this stochastic

process have been proposed.52,72,73 We employ the stochastic

rotation dynamics (SRD) approach ofMPCwith angularmomentum

Fig. 3 Fluid velocity fields of a spheroidal squirmer in the laboratory frame

for (a) B1 = 1, B2 = 0, and (b) B1 = 0, B2 = 1. The corresponding stream

function is given by eqn (26). The magnitude of the velocity field is color

coded logarithmically. Note that the pusher velocity field with B1 = 0,

B2 = �1 is not shown, since it follows from that of the puller with B1 = 0,

B2 = 1 by inverting the arrows.
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conservation (SRD+a),74,75 which updates the particle velocities

in a cell according to

vnewi ¼ vcm þ RðaÞvi;c � ri;c

� mI�1
X

j2cell
rj;c � vj;c � RðaÞvj;c

� �� 	

" #

:
(38)

Here, ri,c = ri � rcm, where rcm is the center-of-mass position of

the particles in the cell, and similarly, vi,c = vi � vcm, with the

center-of-mass velocity vcm. R(a) is the rotation matrix, which

describes a rotation around a randomly oriented axis by the

angle a. The angle a is a constant, and the axis of rotation is

chosen independently for each cell and time step. Finally, I is

the moment-of-inertia tensor of the particles in the center-of-

mass reference frame of the cell. Partition of the system into

collision cells leads to a violation of Galilean invariance. To

reestablish Galilean invariance, a random shift of the collision-

cell lattice is introduced at every collision step.76,77

Since energy is not conserved in the collision step, we apply

a cell level canonical thermostat at temperature T.78,79 The

latter ensures Maxwell–Boltzmann distributed velocities. The

MPC algorithm is embarrassingly parallel. Hence, we implement

it on a Graphics Processing Unit (GPU) for a high performance

gain.80

The following simulations are performed with the mean

number of particles per collision cell hNci = 10, the rotation

angle a = 1301, and the time step h ¼ 0:02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2= kBTð Þ
p

, which

yields a fluid viscosity of Z ¼ 17:8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT=a4
p

.

4 Implementation of a spheroidal
squirmer in MPC

A spheroidal squirmer is a homogeneous rigid body characterized

by its massM, center-of-mass position C, orientation q, translational

velocity U, and angular momentum l. Thereby, q = (q0,q1,q2,q3) is a

rotation quaternion and can be related to the rotation matrix D,

which transforms vectors from the laboratory frame to the body-

fixed frame81 (see Appendix A (eqn (64))). We distinguish vectors in

the laboratory frame and body-fixed frame by a superscript, i.e., vs is

a vector in the laboratory (or space-fixed) frame while

vb = Dvs (39)

is the corresponding vector in the body-fixed frame. For vectors

in the laboratory frame, we will frequently omit the superscript.

The orientation vector of a spheroid is e = DTeb = DT(0,0,1)T. The

moment of inertia tensor in the body-fixed frame Ib is a constant

diagonal matrix with diagonal elements Ix = (M/5)(bx
2 + bz

2) = Iy
and Iz = (2M/5)bx

2. When needed, the angular velocity is calculated

as Xs = DT(Ib)�1Dls.

For all simulations we choose a neutrally bouyant spheroid,

i.e., M = r(4p/3)bzbx
2, where r is the fluid mass density.

4.1 Streaming step

During the streaming step, a spheroid will collide with several

MPC particles. Since the total change in (angular) momentum

of a spheroid during one streaming step is small, we perform

the collisions with MPC particles in a coarse-grained way.82

For the streaming step at time t, we determine the spheroid’s

position, velocity, orientation, and angular velocity at times

t + h/2 and t + h, under the assumption that there is no inter-

action with MPC particles. However, steric interactions between

spheroids, as well as spheroids and walls are taken into account

as described in Section 4.3.

Subsequently, all MPC particles are streamed, i.e., their

positions are updated according to ri(t + h) = ri(t) + hvi(t). Thereby,

a certain fraction of MPC particles penetrates a spheroid. To

detect those particles in an efficient way, possible collision cells

intersected by the spheroid are identified first. For this purpose,

we select all those cells, which are within a sphere of radius bz
enclosing the spheroid instead of the spheroid itself, which is

more efficient, since it avoids rotating candidate cells into the

body-fixed frame during selection. A loop over all particles in

respective collision cells identifies those particles, which are

inside the spheroid and they are labeled with the spheroid index.

Then, each particle i inside a spheroid at time t + h is moved back

in time by half a time step and subsequently translated onto the

spheroid’s surface. The translation can be realized in different

ways. One possibility is to construct a virtual spheroid with semi-

axes b̃z, b̃x, b̃z/b̃x = bz/bx and ri(t + h/2) on its surface. The particle is

then translated along the normal vector of the virtual spheroid

until it is on the real spheroid’s surface. Alternatively, the

difference vector ri(t + h/2) � C(t + h/2) can be scaled such that

the particle position lies on the spheroid’ surface. We tried both

approaches and found no significant difference. Once the MPC

particle at time t + h/2 is located on the spheroid’s surface, the

momentum transfer due to a bounce-back collision

Ji = 2m{vi � U � X � (ri � C) � DTubsq[D(ri � C)]} (40)

at time t + h/2 is determined, taking into account the squirmer

surface fluid velocity usq of eqn (11).83 Thereby, a useful identity

to determine s is given in eqn (8) of ref. 45, and z is given by

z ¼ 1

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðzþ cÞ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ ðz� cÞ2
q

� �

: (41)

The velocity of the MPC particle is updated according to vi
0 =

vi � Ji/m. Subsequently, the position ri(t + h) is obtained by

streaming the MPC particle for the remaining time h/2 with

velocity vi
0, i.e., ri(t + h) = ri(t + h/2) + hvi

0/2.

As a consequence of the elastic collisions, the center-of-mass

velocity and rotation frequency of a spheroid are finally given by

U(t + h)0 = U(t + h) + J/M, (42)

X(t + h)0 = X(t + h) + DT(Ib)�1DL, (43)

where J ¼ P

i

J i is total momentum transfer by the MPC fluid

and L ¼ P

i

riðtþ h=2Þ � Cðtþ h=2Þð Þ � J i is the respective

angular momentum transfer.

4.2 Collision step

In a first step, ghost particles are distributed inside each

spheroid.82,84 The number density and mass are equal for ghost
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and fluid particles. The ghost particle positions rgi are uniformly

distributed in the spheroid and their velocities are given by

vgi = U + X � (ri � C) + usq,i + vR,i. (44)

The Cartesian components of vR,i are Gaussian-distributed

random numbers with zero mean and variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

. The

squirming velocity usq,i is determined by eqn (11), with the

ghost particle position projected onto the spheroid’s surface (cf.

Section 4.1). As a result of MPC collisions, a spheroid’s linear

and angular momenta change by Jgi = m(%vgi � vgi ) and Lgi =

(rgi � C) � J gi , where %v
g
i and vgi are the ghost particle’s velocity

after and before the MPC collision. Hence, the spheroid velocity

and angular velocity become

U0 = U + Jg/M, (45)

X
0 = X + RT(Ib)�1RLg. (46)

4.3 Rigid body dynamics for spheroids

During the streaming step, the spheroids move according to

rigid-body dynamics, governed by85

MC̈ = F, (47)

€q ¼ 1

2
Qð _qÞ 0

Ob

� �

þQðqÞ 0
_Ob

� �
 �

; (48)

_q ¼ 1

2
QðqÞ 0

Ob

� �

; (49)

dOb
a

dt
¼ Ia

�1 Tb
a þ Ib � Ig

� �

Ob
bO

b
g

h i

: (50)

Here, Q(q) is defined in Appendix A (eqn (68)) and F and T are

the force and torque acting on the spheroid. Forces and torques

are derived from steric interaction potentials as presented in

Appendix C. Eqn (50) are Euler’s equations for rigid body

dynamics and hold for (a, b, g) = (x, y, z), (y, z, x), and (z, x, y).

Whenever necessary, body-fixed and laboratory-frame quantities

can be related by the rotation matrix D which is given in terms

of the quaternion q in Appendix A (eqn (64)).

For the numerical integration of the equations of motion,

the widely applied leap-frog method81 is not useful, since velocity,

angular momentum, position, and orientation are required at the

same point in time for the coupling to the MPC method. Hence,

we employ the Verlet algorithm for rigid-body rotational motion

proposed in ref. 85. Integration for a time step t is performed as

follows:

(i) Update C and q according to (cf. eqn (49) and (50))

Cðtþ tÞ ¼ CðtÞ þUðtÞtþ t2

2M
FsðtÞ; (51)

qðtþ tÞ ¼ ð1� ~lÞqðtÞ þ _qtþ t2

2
€q; (52)

~l ¼ 1� _q2t2
�

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� _q2t2 � _q � €qt3 � €q2 � _q4ð Þt4=4
q

: (53)

The parameter ~l is introduced to guarantee q2 = 1.

(ii) Calculate forces and torques Fs(t + t) and Ts(t + t).

(iii) Update U and ls according to

Uðtþ tÞ ¼ UðtÞ þ t

2M
FsðtÞ þ Fsðtþ tÞ½ �; (54)

lsðtþ tÞ ¼ lsðtÞ þ t

2
T sðtÞ þ Tsðtþ tÞ½ �: (55)

5 Simulations – thermal properties
and flow field
5.1 Passive colloid

For the passive spheroidal colloid (B1 = B2 = 0), we perform

equilibrium simulations and determine hUa
2i as well as h(Ob

a)
2i

for a A {x, y, z}. Due to the equipartition of energy, we expect

Ua
2


 �

¼ kBT

M
; (56)

Ob
a

� �2
D E

¼ kBT

Ia
: (57)

We fix the aspect ratio bz/bx = 2 and vary bx in the range bx A [2a,

4a]. The simulation results agree very well with the theoretical

values (56) and (57). As expected, the deviations from theory

decrease with increasing spheroid size, due to a better resolution

in terms of collision cells. In general, the relative error sr =

(hxtheo2i � hxsim2i)/hxtheo2i is larger for Ob
a than for Ua. We find the

largest relative error for h(Ob
z )
2i, namely sr = 9.5%, 5.3%, and

3.1% for bx = 2a, 3a, and 4a. Hence, we choose the minor axis

bx Z 3a in the following.

In addition, we determine the orientation correlation function

he(t)�e(0)i. The theory of rotational Brownian motion86 predicts

he(t)�e(0)i = exp(�2D>R t), (58)

where DR = (2D>R + DJ

R)/3, D
J

R = kBT/x
J, D>R = kBT/x

>, and xJ

and x> are the parallel and perpendicular rotational friction

coefficients of a prolate spheroid with respect to the major

semi-axis; explicitly69

xk ¼ 8pZbz
34

3
e3 1� e2
� �

2e� 1� e2
� �

L
� ��1

; (59)

x? ¼ 8pZbz
34

3
e3 2� e2
� �

�2eþ 1þ e2
� �

L
� ��1

; (60)

L ¼ log
1þ e

1� e

� �

(61)

Simulation results for the orientational auto-correlation function

are shown in Fig. 4 for two spheroids of different eccentricity.

The correlation functions decay exponentially. However, for the

spheroid with the smaller eccentricity, we find a somewhat

faster decay than predicted by theory, whereas good agreement

is found for the larger spheroid. We attribute the difference

to finite-size effects related to the discreteness of the collision

lattice. For larger objects, discretization effects become smaller.
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5.2 Squirmer

We determine the steady state swimming velocity of a squirmer

via he�Ui, which should be equal to U0 (cf. eqn (3)). Results for

various eccentricities are displayed in Fig. 5. The velocity U0

increases with increasing eccentricity e in close agreement with

the theoretical prediction of eqn (3). We confirm that the force-

dipole parameter b does not affect the velocity of the squirmer,

as long as the Reynolds number Re is low, i.e., Re = rU0bz/Zt 0.1.

We also determine the orientational correlation function and find

that a squirmer exhibits the same orientational decorrelation as

the corresponding passive particle (cf. Fig. 4).

Moreover, we calculate the flow field from the simulation

data and compare it with the theoretical prediction. As shown

in Fig. 6, the two fields are in close agreement. The two-

dimensional flow field of the MPC fluid, averaged over the

rotation angle j, is determined at the vertices of a fine resolution

mesh. The velocities at these vertices include averages over time

of an individual realization as well as ensemble averages over

various realizations. By the latter, we determine an estimate for

the error of the mean velocity. The median (over vertices) of this

error is approximately 5% for the parameters of Fig. 6(b) and 10%

for that of Fig. 6(e). Note that we choose a smaller swimming

mode B1 for the puller (Fig. 6(b)) than for the neutral squirmer

(Fig. 6(e)). The reason is that the agreement with theory was not

satisfactory for the puller with B1 ¼ 0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

, which we

attribute to a non-vanishing Reynolds number (Re E 0.1) in

the simulation. In Fig. 6(c) and (f), we observe lines of high

relative errors (yellow in the color code). They appear because

theory predicts v%r = 0 or vz = 0 for these lines, which is difficult

to achieve in simulations. Hence, the overall agreement

between simulations and theory is very satisfactory, and the

implementation is very valuable for the simulation of squirmer–

squirmer and squirmer–wall interactions, where the details of

the flow field matter. For a benchmark of the code on a current

GPU see Appendix D.

6 Cooperative swimming in a narrow slit

We simulate the cooperative swimming behavior of two squirmers

in a slit geometry. The slit is formed by two parallel no-slip walls

located at y = 0 and y = Ly. The no-slip boundary condition

is implemented by applying the bounce-back rule and ghost

particles of zero mean velocity in the walls.84 Steric interactions

between two squirmers and between a squirmer and a wall are

taken into account by the procedure described in Appendix C.

Fig. 4 Orientation correlation functions he(t)�e(0)i for passive spheroids

with bz = 6a, bx = 3a (bottom blue line) and bz = 9a, bx = 3a (top black line).

The plot shows the simulation data (blue and black solid lines), an

exponential fit to that data (red dashed), and the theoretical prediction

according to eqn (58) (green dotted).

Fig. 5 Mean swimming velocity as function of the eccentricity e for a

spheroidal squirmer with B1 ¼ 0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

and B2 = 0. The solid line

shows the theoretical prediction of eqn (3). Black dots are simulation

results. The eccentricity was varied by changing bz and keeping bx = 3a

constant. For the red triangle, we simulated a larger spheroid with bx = 6a,

which shows a better agreement with theory.

Fig. 6 Fluid flow fields of a spheroidal squirmer in the laboratory frame

with bx = 3a, bz = 6a, B1 ¼ 0:01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

, and b = 3 (a–c), and with B1 ¼
0:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

; b ¼ 0 (d–f). The magnitude of the velocity field (in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

) is color coded logarithmically. The plots (a) and (d) show

theoretical results, (b) and (e) simulation results, and (c) and (f) relative

errors. The relative error of the flow field is defined as Dva = |vtheoa �
vsima |/[(|vtheoa | + |vsima |)/2]. Note, due to the discrete representation of the

velocity field, some streamlines end abruptly.
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The initial positions and orientations of the two squirmers

(i = 1, 2) are

C1=2 ¼
Lx

2
� dcm

2
;
Ly

2
;
Lz

2

� �T

; (62)

e1/2 = (�cos(a0), 0, sin(a0))
T. (63)

Here, dcm is the initial center-of-mass distance and a0 = (p� y0)/2,

where y0 is the initial angle between e1 and e2. The swimming

mode is chosen as B1 ¼ 0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

and the force dipole mode

b A {�4,0,4}. We choose dcm such that the squirmers are well

separated and vary y0. The squirmers major and minor axes are

bx = 3a and bz = 6a, respectively, and the simulation box size is

Lx = Lz = 15bz, and Ly = 7a. Note that Ly \ bx which keeps the

swimming orientation essentially in the x–z plane.

Results for the mean surface-to-surface distance between

squirmers hdsi and the mean alignment he1�e2i = hcos yi are

shown in Fig. 7 for pushers, pullers, and neutral swimmers with

an initial angle y0 = 3p/8. Due to the setup, the squirmers

initially approach each other and collide at tU0/s E 0.5. The

(persistence) Péclet number Pe = U0/(2D
>

R s) E 60 is sufficiently

high, such that the squirmer orientation has hardly changed

before collision. When the neutral swimmers collide, they initially

align parallel (cos y E 1 at tU0/s E 1 in Fig. 7), but their

trajectories start to diverge immediately thereafter. Pushers

remain parallel for an extended time window, which is expected

as pushers are known to attract each other,37 but at tU0/s E 3

(cf. Fig. 7) their trajectories diverge as well. This is probably due

to noise, since we observe several realizations where pushers

remain parallel. Interestingly, pullers, which are known to repel

each other when swimming in parallel,37 swim cooperatively

and reach a stable orientation with hcos(y)i E 0.77 shortly after

they collided (at tU0/sE 1). Thereby, their cooperative swimming

velocity is about 0.8U0. The flow field of this stable state,

determined by MPC simulations, is shown in Fig. 8. Note that

the velocity field in the swimming plane is left-right symmetric,

and that there is a stagnation point in the center behind the

swimmers. Fig. 8 reveals that this point actually corresponds to

a line normal to the walls. In ref. 87, it was shown that the flow

field of a force dipole in a narrow slit exhibits a recirculating

pattern with loops in a plane parallel to the walls88 and a

parabolic flow profile perpendicular to them. Both features can

be observed in Fig. 8. Fig. 9 shows that the fixed point of

cooperatively swimming pullers is reached for nearly all simulated

Fig. 7 Average surface-to-surface distance ds and orientation of squirmers,

where cos(y) = e1�e2, as function of time. The solid blue, dashed black, and

dotted red lines correspond to pullers b = 4, neutrals b = 0 and pushers

b = �4. The standard deviation of the blue line (b = 4) is indicated by the

cyan shaded region.

Fig. 8 Flow field of two cooperatively swimming pullers in the laboratory

frame. The magnitude of the velocity field (in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

) is color

coded logarithmically. We denote the direction normal to the walls by y,

the cooperative swimming direction by z, the remaining Cartesian axis by

x, and choose the swimmers’ center of mass as origin. Panel (a) shows

the flow field at x = 0 in the zy-plane, while panel (b) shows the flow field at

y = 0 in the xz-plane. The black elliptical shapes (‘‘transparent’’, solid)

indicate the projection of the swimmers onto the considered plane.
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initial conditions y0 A (0, p/2). Only pullers that are nearly parallel

initially (y0 = p/8, cos y0 E 0.92 in Fig. 9), repel each other such

that they will not reach the fixed point. For Péclet numbers

Pe o 60, the fixed point remains at hcos(y)i E 0.77. However, it

becomes more likely for the swimmers to escape (or never

reach) the fixed point.

A detailed study reveals that the fixed point vanishes, when

the walls are replaced by periodic boundary conditions (we use

a cubic simulation box of length 10bz). This is even true when

we apply three-dimensional periodic boundaries, but keep

the wall potential implemented, i.e., the squirmers are still

confined in a narrow slit of height 7a as before (the fluid

simulation box is cubic with length 10bz). These observations

are quantified in Fig. 10. Note that the slow increase of the

average squirmer surface-to-surface distance in the case of a

periodic system with wall potential is due to the fact that the

pullers still swim together in several realizations. However, in

these realizations they no longer swim in a plane as for the slit

geometry, but rather show three-dimensional configurations

with tilted major axes. Evidently, hydrodynamic interactions

with the walls89 are essential for the swimmers’ dynamics.

In addition, we studied the swim behavior of spherical

squirmers. Here, we observe diverging trajectories for all squirmer

types, i.e., pushers, neutral squirmers, and pullers. Such diverging

trajectories have already been reported in ref. 90 for spherical

squirmers in bulk. In contrast, in ref. 91 a cooperative swimming

mode for spherical squirmers has been observed (see Fig. 22(c)

of ref. 91). However, this cooperative swimming—termed pair-

swimming by the authors—is unstable to perturbations that displace

one swimmer out of the swimming plane.91 Since our simulations

and those of ref. 90 include thermal fluctuations, we consequently

do not observe the cooperative swimming mode of ref. 91.

Hence, the stable close-by cooperative swimming of pullers

is governed by the squirmer anisotropy, by the hydrodynamic

interactions between them and, importantly, between pullers

and confining surfaces.

This conclusion is in contrast to results presented in ref. 47,

where a monolayer of spheroidal squirmers is considered, with

their centers and orientation vectors fixed in the same plane,

however, without confining walls. The study reports a stable

cooperative motion for pullers with angles yA (0, p/2) by nearest-

neighbor two-body interactions, where all angles between 0 and p/2

are stable. The difference to our study is that in ref. 47 cooperative

features were extracted from a simulation of many swimmers,

whereas we explicitly studied two swimmers. Furthermore our study

explicitly models no-slip walls and includes thermal noise.

To shed light on the stability of the cooperative puller

motion, we varied the puller strength b, the aspect ratio bz/bx,

and the width of the slit Ly. Thereby, we started from our basic

parameter set bx = 3a, bz = 6a, Ly = 7a, and b = 4. With decreasing b,

the stable alignment disappears, i.e., the pullers’ distance increases

after collision (see ESI,† Movies beta 3 and beta 4). For increasing b

the fixed point remains, but the value of cosy decreases, i.e., the

squirmers form a larger angle. With increasing wall separation,

the fixed-point value of cosy decreases, i.e., the angle between the

swimmers increases. For Ly/bz \ 11/6, the mean distance between

swimmers increases rapidly after collision (see Fig. 10). An increase

of the aspect ratio bz/bx from 2 to 3 and 4 increases the fixed-point

value of hcos yi from 0.77 to 0.84 and 0.88. The more elongated

shape leads to a more parallel alignment of the squirmers. For

bz/bx Z 2, the minimal value of b required to achieve cooperative

motion depends weakly on the aspect ratio. In particular, for

bz/bx = 2, 3, and 4, we find the minimal value b E 3.5.

7 Summary and conclusions

We have introduced a spheroidal squirmer model, which comprises

the swimming and force-dipole modes. It is a variation of previously

proposed squirmer models. On the one hand, it includes the

force-dipole mode as an extension to the model of ref. 45.

Fig. 9 Time dependence of the average alignment he1�e2i = hcos yi of two

pullers with b = 4, bz/bx = 2 in a slit of height Ly = 7a, and various initial

angles y0 A (0,p/2) (see ESI,† Movie beta 4).

Fig. 10 Average surface-to-surface distance ds between two pullers with

b = 4, bz = 6a, and bx = 3a as a function of time for various geometries. The

distance ds increases rapidly after collision for squirmers in a cubic

simulation box of side length 10bz with periodic boundary conditions

(black dotted line). Trajectories still diverge, when a confining potential

for the squirmers is present (red dashed line); for details see text. Squirmers

confined in a slit of width Ly = 10a with no-slip walls swim together (blue

solid line). However, their trajectories diverge for wide slits (Ly = 11a for the

green dash-dotted line and Ly = 12a for the cyan dash-dot-dotted line).
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On the other hand, it is an alternative approach compared to

ref. 44 and 47, with the major advantage that our model allows

for the analytical calculation of the flow field. In the present

calculations we employed the Stokes stream function equation.

Very recently a full set of solutions to Stokes’ equations in

spheroidal coordinates were given in ref. 92, which opens an

alternative approach to derive the flow field for our choice of

boundary conditions.

Furthermore, we have presented an implementation of our

spheroidal squirmer in aMPC fluid. In contrast to other frequently

employed simulation approaches, MPC includes thermal

fluctuations. The comparison between the fluid flow profile of

a squirmer extracted from the simulation data with the theoretical

prediction yields very good agreement. As a consequence of the

MPC approach with its discrete collision cells, the minor axis of

the spheroid has to be larger than a few collision cells to avoid

discretization effects. The analysis of the squirmer orientation

correlation function shows that very good agreement between

theory and simulations is already obtained for bz = 9a (major

axis) and bx = 3a (minor axis).

To shed light on the cooperative swimming motion and

on near-field hydrodynamic interactions, we investigated the

collision of two spheroidal squirmers in a slit geometry. We

found a stable stationary state of close-by swimming for spheroidal

pullers, which is determined by hydrodynamic interactions

between the anisotropic squirmers, and, even more important,

by squirmers and surfaces. This stationary state disappears for

low puller strengths and low eccentricities. We expect the stable

close-by swimming of pullers to strongly enhance clustering in

puller suspensions in narrow slits.

Our studies confirm that spheroidal squirmers can accurately be

simulated by the MPC method. The proposed implementation

opens an avenue to study collective and non-equilibrium effects

in systems of anisotropic microswimmers. Even large-scale systems

(103 to 104 swimmers) can be addressed by the implementation of

MPC and the squirmer dynamics on current GPUs.

Appendix
A Quaternion matrices

The rotation matrix D introduced in eqn (39) is given in terms

of the rotation quaternion q as

q0
2þq1

2�q2
2�q3

2 2 q1q2þq0q3ð Þ 2 q1q3�q0q2ð Þ

2 q2q1�q0q3ð Þ q0
2�q1

2þq2
2�q3

2 2 q2q3þq0q1ð Þ

2 q2q1þq0q2ð Þ 2 q3q2�q0q1ð Þ q0
2�q1

2�q2
2þq3

2

0

B

B

B

@

1

C

C

C

A

:

(64)

The matrix Q(q) in eqn (49) is given by

QðqÞ ¼

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: (65)

B Gegenbauer functions

For n Z 2 and x A R the Gegenbauer functions of the first and

second kind Gn and Hn, are defined in terms of the Legendre

functions of the first and second kind Pn and Qn as67,93

GnðxÞ ¼
Pn�2ðxÞ � PnðxÞ

2n� 1
;HnðxÞ ¼

Qn�2ðxÞ �QnðxÞ
2n� 1

: (66)

For n = 0, 1, they are defined as

G0(x) = �H1(x) = 1, G1(x) = H0(x) = �x. (67)

For the reader’s convenience, we give the formula for the

Gegenbauer functions of the first kind for n = 2, 3, and x A R

G2ðxÞ ¼
1

2
1� x2
� �

; (68)

G3ðxÞ ¼
1

2
1� x2
� �

x: (69)

Furthermore, the Gegenbauer functions of the second kind for

n = 2, 3, and x 4 1 are given by

H2ðxÞ ¼
1

2
1� x2
� �

coth �1ðxÞ þ x

2
; (70)

H3ðxÞ ¼
1

2
1� x2
� �

x coth �1ðxÞ þ 1

6
3x2 � 2
� �

: (71)

Here, we used coth�1(x) = ln([x + 1]/[x � 1])/2.

C Steric interactions

Here, we illustrate our implementation of the excluded-volume

interactions between spheroids and walls following the approach

provided in ref. 94.

The spheroid’s surface in the laboratory frame is given by

the quadratic form

1 = A(x) � (x � C)TA(x � C), (72)

where the orientation matrix A can be expressed as

A = (1 � eeT)/bx
2 + eeT/bz

2. (73)

For the steric interactions, we introduce a virtual safety distance

dv, which is small compared to bx and bz. When computing

steric interactions, we replace bx and bz by bx + dv and bz + dv,

respectively. In this paper we used dv = 0.05a for all simulations.

C.1 Interaction between spheroids.We introduce a repulsive

interaction potential between spheroids to prevent their overlap.

The potential is given by

U ¼ 4e0
s0

dR þ s0

� �12

� s0

dR þ s0

� �6
" #

: (74)

Here, s0 and e0 correspond to a length and energy scale,

respectively. We choose e0 = kBT and s0 = 2dv. The directional

contact distance dR between two spheroids, with orientation

matrices A1, A2 and center positions C1, C2, is an approximation

to their true distance of closest approach and is defined by

dR = R(1 � F(A1,A2)
�1/2) (75)
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Here, R = C2 � C1, R = |R|, and F(A1,A2) is the elliptic contact

function, defined as94

F A1;A2ð Þ ¼ max
l

min
x

Sðx; lÞ (76)

¼ max
l

min
x

lA1ðxÞ þ ð1� lÞA2ðxÞð Þ: (77)

Minimization with respect to x demands =S(x,l) = 0,

and hence,

x(l) = {lA1 + (1 � l)A2}
�1{lA1C1 + (1 � l)A2C2}.

(78)

The critical value l = lc that maximizes S(x(l),l) can be found

by the root finding problem

A1(x(l)) � A2(x(l)) = 0. (79)

We implement Brent’s root finding approach.95 The forces and

torques arising from the potential (74) can be calculated

analytically and are given by‡ 94

F1 ¼ 24e0

s0
2

s0

dR þ s0

� �13

� s0

dR þ s0

� �7
" #

� R

R
F�1=2 � 1

� �

� R

2
F�3=2Xc

� �

;

(80)

and

T1 ¼ �12Re0

s0
2

s0

dR þ s0

� �13

� s0

dR þ s0

� �7
" #

(81)

� F�3/2(xc � C) � Xc (82)

for the first spheroid, where Xc = 2lcA1(xc � C1). The force and

torque on the second spheroid follow by Newton’s action-

reaction law, namely

F2 = �F1, (83)

T2 = �T1 + R � F1. (84)

We restrict ourselves to short-range repulsive interactions by

setting the potential U to a constant value for dR 4
ffiffiffi

2
6
p

� 1
� �

s0,

which implies that F1 and T1 are zero for this range of dR values.

Note that an upper bound to dR is R � 2bz, which means that

two spheroids will not interact if R4 2bz þ
ffiffiffi

2
6
p

� 1
� �

s0. This

inequality is checked before a numerical calculation of dR is

employed.

C.2 Interaction between a spheroid and a wall. We assume

that two parallel walls are positioned at y = 0, Ly, which—taking

into account the safety distance dv—results in the effective wall

positions y = dv and Ly � dv. We propose an interaction between

a spheroid and a wall in the style of the spheroid–spheroid

interaction presented in ref. 94. First, we find the point x on the

spheroid’s surface that is closest to a wall. For the wall at y = dv,

this is achieved by minimizing the height h(x) = ey�x � dv under

the constraintA(x) = 1. Using the method of Lagrange multipliers,

we have to minimize L(x,l) = h(x) + l(A(x) � 1). The necessary

condition for a minimum @L/@x = 0 yields

ey + l=A(x) = ey + 2lA(x � C) = 0, (85)

and hence,

x = C � A�1ey/(2l). (86)

Substitution of eqn (86) into A(x) = 1 yields

l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�1ð Þyy
q .

2: (87)

Finally, we obtain the point closest to the wall as

x ¼ C � A�1ey
� �

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�1ð Þyy
q

: (88)

Here, the minus sign has to be chosen, which can be visualized

by the example of a sphere of radius R, for which A = R�21. This

finally yields the height

h ¼ Cy � dv �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�1ð Þyy
q

: (89)

We employ the Lennard-Jones potential

Uw ¼ 4e0
s0

hþ s0

� �12

� s0

hþ s0

� �6
" #

(90)

for a repulsive wall, and Uw assumes a constant value for all

h 	
ffiffiffi

2
6
p

� 1
� �

s0. We can derive the force Fa = �@Uw/@Ca and

torque Ta = �@Uw/@ca acting on the spheroid analytically. For

the force, we find

F ¼ � @Uw

@h

@h

@Cy

ey (91)

¼ �24
e0

s0
2

s0

hþ s0

� �13

� s0

hþ s0

� �7
" #

ey (92)

and for the torque

Ta ¼ � @Uw

@h

@h

@ca

; (93)

with

@h

@ca

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�1ð Þyy
q dax A�1

� �

yz
�daz A�1

� �

yx

� �

: (94)

Here, we used the relation

d

dt
B�1 ¼ �B�1 d

dt
B

� �

B�1; (95)

which holds for an invertible matrix B = B(t) depending on a

scalar parameter t, and eqn (C9) from ref. 94.

For the wall at y = Ly � dv, we have to minimize h(x) = Ly �
dv � ey�x, with x on the spheroid’s surface. This yields

x = C + A�1ey[(A
�1)yy]

�1/2. (96)
‡ Note that eqn (54) of ref. 94 contains a typographical error. The factor 24 needs

to be replaced by 12.
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The formulas for torque and force do not change, except that

we have to insert h ¼ Ly � dv � Cy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A�1ð Þyy
q

and need to

change the sign of the force.

D Benchmark simulation

Computation time. We perform benchmark simulations on

an NVIDIA K80 GPU. First we determine the computation time

for one MPC step in a periodic system, normalized by the

number of fluid particles. We obtain approximately 4.5 nano-

seconds per time step and particle, which is in accordance with

the value of about 3 nanoseconds reported in ref. 80, since

the extension to angular momentum conserving MPC roughly

doubles the computation time, while the NVIDIA K80 is

approximately twice as fast as the NVIDIA GTX580 employed

in ref. 80.

Next, we perform a benchmark MPC simulation of many

spheroidal squirmers with bx = 3a, bz = 6a in a narrow slit. The

slit height and length are chosen as Ly = 7a and Lx = Lz = 600a,

respectively. We vary the number Nsq of squirmers, i.e., the two-

dimensional packing fraction Nsqpbxbz/(LxLz), and determine

the computation time per MPC time step, normalized by the

number of fluid and ghost particles. A simulation without

squirmers takes approximately 4.9 nanoseconds per time step

and particle. Hence, the addition of no-slip walls leads only to a

minor increase in simulation time by approximately 10%.

When spheroidal squirmers are introduced, the computation

time increases linearly with the number of squirmers up to a

value of 13.2 nanoseconds for the two-dimensional packing

fraction 0.6, which corresponds to 3825 squirmers in our set-up.

Similar values are found for smaller (Lx = Ly = 300a) and larger

systems (Lx = Ly = 900a). The increase in computation time is

mostly related to the squirmers’ ghost particles. Unlike the fluid

particles and the ghost particles for the no-slip walls, they are

not spatially ordered in memory, which leads to a significantly

lower processing speed (cf. Fig. 3 of ref. 80).

The steric interactions are computed sequentially on the

CPU exploiting a cell-linked list.81 The computation time spent

for the steric interactions increases linearly with Nsq. However,

it only contributes by about 4% to the total simulation time for

the considered set-up.

Memory limitations. The size of the systems that can be

studied with our code is limited by the available memory on the

used GPU. Explicitly, the required memory to store fluid particle,

collision cell, and spheroid properties are listed in Table 1.

Compared to the number of fluid particles, the number of

spheroidal squirmers is several orders of magnitude smaller

and their impact on GPU memory usage is negligible. With a

typical density of hNci = 10 particles per cell, the required GPU

memory is 680 bytes per collision cell. Therefore, approximately

1.5 � 106 collision cells can be studied per 1 GB of GPU

memory. Hence, the memory capacity of 4–12 GB of recent

GPUs corresponds approximately to 6 � 106–2 � 107 collision

cells. The volume of a spheroidal squirmer with bx = 3a, bz = 6a

is equivalent to 226 cells. Assuming a 30% volume fraction

of squirmers, memory limits the total number of squirmers to

8 � 103–2.4 � 104. Note that for systems of many squirmers,

the time scales of interest can be very long. Hence, in applications,

the considered system size has often to be smaller (E103 squirmers)

for acceptable total simulation times.
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