001     818127
005     20210129224107.0
037 _ _ |a FZJ-2016-04643
041 _ _ |a English
100 1 _ |a Schmitz-Antoniak, Carolin
|0 P:(DE-Juel1)162347
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 8th Joint European Magnetic Symposia
|g JEMS2016
|c Glasgow
|d 2016-08-22 - 2016-08-26
|w UK
245 _ _ |a How the surface affects the electronic and magnetic properties of magnetite nanoparticles
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1485790226_31095
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Magnetite (Fe3O4) nanoparticles are objects of intense research activities due to their broad range of applications covering technological, medical, and environmental applications. They are used e.g. for rotary shaft sealing, oscillation damping, position sensing, magnetic inks for jet printing, as contrast agents in magnetic resonance imaging, and to remove heavy metals from wastewater. In addition, magnetite is a half-metal with a predicted negative spin polarisation making magnetite interesting for spintronics. For all applications, a high quality of magnetite is crucial to obtain the desired properties. In this work, we studied the influence of the surface on the electronic and magnetic properties of magnetite nanoparticles by means of x-ray absorption near-edge spectroscopy (XANES) and its associated magnetic circular dichroism (XMCD). In particular, we investigated ensembles of magnetite nanoparticles with a mean diameter of 3nm, 6nm or 9nm and the influence of capping the particles with a 3nm thick silica shell or organic ligands. XANES and XMCD gives the unique possibility to distinguish between the three different Fe species in magnetite, i.e. tetrahedrally coordinated Fe3+ ions, octahedrally coordinated Fe3+, and octahedrally coordinated Fe2+, by using different photon energies for hysteresis measurements. Besides changes in the electronic structure, i.e. in the density of unoccupied 3d states monitored by XANES, and the effective spin magnetic moments, we obtained a different spin canting behaviour of Fe ions in magnetite at different lattice sites from the magnetic field dependent XMCD as shown in the figure below. The results are discussed regarding different exchange mechanisms and possible advantages and drawbacks for applications. Measurements were performed at beamline UE46-PGM1, HZB – BESSY II synchrotron radiation facility. We thank the BESSY II staff for kind support during beamtimes. Financially supported by BMBF (05 ES3XBA/5) and DFG (WE2623/3-1).
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
700 1 _ |a Warland, Anne
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Darbandi, Masih
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schmitz, Detlef
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wende, Heiko
|0 P:(DE-HGF)0
|b 4
856 4 _ |u http://jems2016.iopconfs.org/programme
909 C O |o oai:juser.fz-juelich.de:818127
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162347
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21