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Abstract. Altitude-resolved aerosol detection in the upper

troposphere and lower stratosphere (UTLS) is a challenging

task for remote sensing instruments. Infrared limb emission

measurements provide vertically resolved global measure-

ments at day- and nighttime in the UTLS. For high-spectral-

resolution infrared limb instruments we present here a new

method to detect aerosol and separate between ice and non-

ice particles. The method is based on an improved aerosol–

cloud index that identifies infrared limb emission spectra af-

fected by non-ice aerosol or ice clouds. For the discrimina-

tion between non-ice aerosol and ice clouds we employed

brightness temperature difference correlations. The discrim-

ination thresholds for this method were derived from radia-

tive transfer simulations (including scattering) and Michel-

son Interferometer for Passive Atmospheric Sounding (MI-

PAS)/Envisat measurements obtained in 2011. We demon-

strate the value of this approach for observations of vol-

canic ash and sulfate aerosol originating from the Grímsvötn

(Iceland, 64◦ N), Puyehue–Cordón Caulle (Chile, 40◦ S), and

Nabro (Eritrea, 13◦ N) eruptions in May and June 2011 by

comparing the MIPAS volcanic aerosol detections with At-

mospheric Infrared Sounder (AIRS) volcanic ash and SO2

measurements.

1 Introduction

Aerosol is omnipresent and highly variable in the atmo-

sphere. In the upper troposphere and lower stratosphere

(UTLS) a large variety of aerosol particles, comprising sul-

fate droplets, volcanic ash, mineral dust, wild fire aerosol,

organic material, and meteoritic dust, has been found (e.g.

Junge et al., 1961; Mossop, 1964; Prata, 1989a; Murphy

et al., 2007; Fromm et al., 2010; Liu et al., 2013; Weigel

et al., 2014) (in this paper we do not refer to ice particles or

liquid water droplets as aerosol). The stratospheric aerosol

is dominated by sulfate aerosol (Junge et al., 1961) and is

significantly influenced by volcanic eruptions (e.g. Bauman

et al., 2003; Vernier et al., 2011). It has an impact on the

radiation budget of the Earth and hence influences climate

(Santer et al., 2014; Ridley et al., 2014). The tropospheric

background aerosol is also dominated by sulfate aerosol but

is disturbed by numerous irregular events, such as volcanic

eruptions, mineral dust outbreaks, and fires. In the tropo-

sphere some specific aerosol particles serve as condensation

nuclei and hence influence cloud formation and precipitation

(Fridlind et al., 2004; Yu et al., 2010; Yuan et al., 2011).

Aerosol events, such as mineral dust outbreaks from the Sa-

hara fertilising the Amazon forest (Koren et al., 2006) and

volcanic ash posing a danger to aircraft (Casadevall, 1994),

can be of particular importance for specific questions. Lidar

measurements indicate that volcanic aerosol also can be a

strongly variable load in the upper troposphere (Di Pierro

et al., 2013, Fig. 12).

Aerosol measurements in the stratosphere are available

from a variety of sources. In particular, satellite measure-

ments provide global climatologies and time series of strato-

spheric aerosol (Bauman et al., 2003; Vernier et al., 2011;

Kremser et al., 2016). Global long-term observations of up-

per tropospheric aerosol are rare because they are hampered

by the presence of ice clouds (e.g. Kent et al., 2003; Thoma-

son and Vernier, 2013). Hence, many stratospheric aerosol

products are only available above 15 km (Ridley et al., 2014).
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Satellite-based limb instruments, such as the Stratospheric

Aerosol and Gas Experiment (SAGE) series (Thomason

et al., 1997; Bauman et al., 2003), Optical Spectrograph and

InfraRed Imaging System (OSIRIS) (Rieger et al., 2015), and

the Halogen Occultation Experiment (HALOE) (Thomason,

2012), have a long-standing history of measuring altitude-

resolved global time series of stratospheric aerosol. However,

the spatial coverage of solar occultation instruments (SAGE,

HALOE) is limited. The solar scattering (OSIRIS) measure-

ments are limited to daytime and hence cannot provide mea-

surements at polar night. Also, due to the high sensitivity to

low aerosol concentrations of these instruments measuring

in the ultraviolet to near-infrared spectral range, their extinc-

tion profiles run into saturation for specific aerosol events,

such as moderate to major volcanic eruptions (with an vol-

canic explosivity index of 4; e.g. Sarychev, 2009; Nabro,

2011) and impede measurements below the plume top al-

titude (Fromm et al., 2014). The 750 nm extinction coef-

ficient thresholds range from about 3 × 10−3 to 0.02 km−1

for OSIRIS and SAGE II respectively (Fromm et al., 2014).

Extending these aerosol measurements into the upper tropo-

sphere is also challenging because the separation between ice

clouds and aerosol is prone to errors for SAGE and HALOE

(Kent et al., 2003; Thomason and Vernier, 2013) or is not

done for OSIRIS (Fromm et al., 2014).

In contrast, satellite-based infrared (IR) emission measure-

ments provide a global coverage at day- and nighttime during

all seasons. Furthermore, IR nadir instruments have a better

global and temporal coverage than ultraviolet (UV)/visible

(VIS) nadir measurements or occultation measurements. IR

nadir measurements have a long-standing history in detect-

ing aerosols and retrieving aerosol composition and micro-

physics. The aerosol measurements from IR nadir instru-

ments mainly focus on volcanic ash (e.g. Prata, 1989a; Gue-

henneux et al., 2015), mineral dust (e.g. Peyridieu et al.,

2010; Klüser et al., 2011; Klueser et al., 2012; Liu et al.,

2013), and smoke (Fromm et al., 2008). There are several

methods available to detect aerosol, filter out ice clouds, and

classify aerosol types. These methods comprise the split win-

dow/reverse absorption technique for volcanic ash (Prata,

1989a, b; Rose et al., 2013), trispectral approaches for vol-

canic ash and mineral dust (Ackerman et al., 1990; Acker-

man, 1997; Guehenneux et al., 2015), and multispectral ap-

proaches for hyperspectral instruments (Gangale et al., 2010;

Clarisse et al., 2010, 2013). Although the established meth-

ods are used for operational data products they are still sub-

ject to improvements (Guehenneux et al., 2015). The capa-

bility of detecting sulfate aerosol with IR nadir measure-

ments has been demonstrated for band measurements (Baran

et al., 1993; Ackerman, 1997) and for hyperspectral instru-

ments (Clarisse et al., 2010; Gangale et al., 2010; Karagulian

et al., 2010). Ackerman (1997) found that sulfate droplets

with an aerosol optical depth (AOD) larger than 0.01 at 11 µm

should be detectable from IR nadir measurements. However,

a major disadvantage of IR nadir aerosol measurements is

the lack of altitude profile information. Another shortcom-

ing is the limited sensitivity towards thin aerosol. IR nadir

instruments are not sensitive at low AODs, which are char-

acteristic for polar stratospheric clouds (PSCs) or diluted

volcanic sulfate aerosol. Considering UV/VIS solar occul-

tation/scattering measurements and IR nadir measurements

together, there is a measurement gap for AODs between

0.02 and 0.1 for sulfate aerosol: for UV/VIS solar occulta-

tion/scattering measurements the maximum retrievable AOD

is 0.02 (Fromm et al., 2014) and for IR nadir measurements

the minimum detectable AOD is 0.01 (Ackerman, 1997),

which corresponds to an AOD of about 0.1 in the VIS range

for the same scenario (e.g. Bauman et al., 2003).

IR limb emission measurements combine the advantages

of occultation and IR nadir measurements. They have bet-

ter global coverage than occultation measurements and pro-

vide altitude information. Limb emission measurements in

the IR are highly sensitive towards aerosol, yet only a few

studies deal with aerosol detection, aerosol classification, and

ice cloud filtering of such measurements. It has been shown

that the stratospheric sulfate aerosol after the Mt. Pinatubo

eruption introduced a characteristic spectral signature into

IR limb spectra for the Improved Stratospheric And Meso-

spheric Sounder (ISAMS) (Grainger et al., 1993; Lambert

et al., 1993), the Cryogenic Limb Array Etalon Spectrom-

eter (CLAES) (Massie et al., 1996; Lambert et al., 1997),

and the balloon-borne Michelson Interferometer for Passive

Atmospheric Sounding (MIPAS-B) (Echle et al., 1998). Fur-

ther, Echle et al. (1998) derived optical and microphysical

parameters of stratospheric aerosol from MIPAS-B measure-

ments. Studies using high-resolution IR spectra of the space-

borne IR limb instruments Cryogenic Infrared Spectrome-

ters and Telescopes for the Atmosphere (CRISTA) (Offer-

mann et al., 1999; Riese et al., 1999) and MIPAS (Fischer

et al., 2008) present methods to detect PSCs and distinguish

between the three PSC types (ice, supercooled ternary solu-

tions, and nitric acid trihydrate) (Spang and Remedios, 2003;

Spang et al., 2004, 2005; Höpfner et al., 2009; Spang et al.,

2012). However, these studies are restricted to the strato-

sphere and do not tackle the discrimination between aerosol

and ice clouds in the troposphere. Measurements of the High

Resolution Dynamics Limb Sounder (HIRDLS) (Gille et al.,

2008) provide a flag for four different cloud types in the

troposphere and stratosphere (1 – unknown cloud, 2 – cirrus

layer, 3 – extensive PSC, 4 – opaque cloud) and 12 µm ex-

tinctions. HIRDLS measurements are also sensitive towards

volcanic aerosol and forest fire smoke clouds, which the de-

tection routine classifies as “unknown cloud” (Massie et al.,

2007). However, not only aerosol is classified as “unknown

cloud”; multilayer cloud structures and clouds of intermedi-

ate thickness between deep convection tower and isolated cir-

rus layer also fall into the “unknown cloud” category (Massie

et al., 2007).

For the detection of clouds and aerosol in the troposphere

and stratosphere, Spang et al. (2001) introduced the cloud
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index (CI) for CRISTA limb IR measurements. Later, the CI

was adapted to MIPAS (Spang et al., 2004) and to the air-

borne CRISTA-New Frontiers (CRISTA-NF) (Spang et al.,

2008). The MIPAS CI thresholds were optimized as a func-

tion of latitude and altitude (Sembhi et al., 2012). A first at-

tempt to classify between tropospheric ice and liquid clouds

in MIPAS spectra was made by Spang et al. (2012). Regard-

ing the discrimination between ice clouds and volcanic ash,

Griessbach et al. (2012, 2014) presented a method to de-

tect volcanic ash in the troposphere and stratosphere with

MIPAS. Also for MIPAS, Grainger et al. (2013) presented

methods to identify volcanic plumes containing sulfur diox-

ide, sulfate aerosol, and volcanic ash.

Aerosol detection and the separation from ice clouds for

IR limb emission measurements is by far not as elaborated

as for IR nadir measurements. Also, the nadir methods can-

not be simply applied to limb emission measurements as

they have rather different sensitivities due to different mea-

surement geometries and principles (emission lines in the

limb spectra and absorption lines in the nadir spectra). How-

ever, the IR nadir classification techniques mentioned above

demonstrate the capability of IR measurements to provide a

separation between ice clouds and various aerosol types. Sep-

arating between aerosol and ice clouds constitutes the first

step towards altitude-resolved IR limb emission aerosol mea-

surements in the UTLS. This region is of particular interest as

in the past chiefly due to the lack of measurements the impact

of volcanic aerosol on radiative forcing in the lower strato-

sphere at high and midlatitudes has been underestimated (Ri-

dley et al., 2014).

Here, we present a method to detect clouds and aerosol

in the troposphere and stratosphere and to separate between

aerosol and ice clouds for IR limb emission measurements.

The paper describes the method and shows examples for

altitude-resolved aerosol detection for three volcanic erup-

tions at polar, mid-, and tropical latitudes. First, we present

the instruments and our radiative transfer model (Sect. 2).

Then we introduce a method that allows aerosol and clouds

to be detected in the troposphere as well as in the stratosphere

(Sect. 3.1). Starting with the new aerosol and cloud detec-

tion we develop a method to distinguish between ice clouds

and aerosol (Sect. 3.2). We apply the new method to MIPAS

measurements in 2011 and present the results for three vol-

canic eruptions (the Grímsvötn (Iceland), Puyehue–Cordón

Caulle (Chile), and the Nabro (Eritrea) eruptions) and com-

pare them with Atmospheric Infrared Sounder (AIRS) SO2

and volcanic ash measurements (Sect. 4). Finally, we present

our conclusions (Sect. 5).

2 Instruments and forward model

2.1 MIPAS

The IR limb sounder MIPAS measured high-resolution spec-

tra in the thermal IR between 685 and 2410 cm−1 (Fischer

et al., 2008). In our study we use the measurements of band

A (685–970 cm−1) and band B (1215–1500 cm−1). MIPAS

was mounted on ESA’s Envisat and measured atmospheric

profiles between 6 and 68 km altitude from July 2002 to

March 2004 and between 7 and 72 km altitude from Jan-

uary 2005 to April 2012 in its nominal mode. MIPAS mea-

sured in the thermal IR from a nearly polar orbit providing

complete latitudinal and longitudinal coverage at day- and

nighttime. Due to a malfunction in 2004 MIPAS’s original

nominal operation mode, which comprised a spectral sam-

pling of 0.025 cm−1 and a vertical sampling of 3 km, had to

be changed. In 2005 the spectral sampling was reduced to

0.0625 cm−1 and the vertical sampling below 20 km was in-

creased to 1.5 km (Fischer et al., 2008). Also, the measure-

ment geometry was modified so that MIPAS sampled down

to 7 km in the polar regions and down to 10 km in the trop-

ics (Fischer et al., 2008). For developing a method to detect

aerosol and to demonstrate its viability we use MIPAS level

1b calibrated radiances that are available at ESA (2015).

2.2 AIRS

For the comparison with the MIPAS aerosol measurements

we use the AIRS level 1b radiances that are available at

NASA (2015). The IR nadir sounder AIRS (Aumann et al.,

2003) is mounted on NASA’s Aqua satellite launched in May

2002. The AIRS hyperspectral IR spectra between 3.7 and

15.4 µm (649–2674 cm−1) are obtained from measurements

in the nadir and sub-limb observation geometry. Each scan

consists of 90 footprints in the across-track direction and

covers a distance of 1765 km on the ground. The footprint

size is 13.5 km × 13.5 km for nadir and 41 km × 21.4 km for

the outermost sub-limb views. AIRS measures 14.5 orbits

and provides about 2.9 million spectra per day. This provides

an excellent horizontal resolution with global coverage twice

a day except for small gaps at mid- and low latitudes.

2.3 Juelich Rapid Spectral Simulation Code

(JURASSIC)

For radiative transfer simulations of the MIPAS measure-

ments we use the JURASSIC (Hoffmann et al., 2008). It

applies the emissivity growth approximation (Gordley and

Russell, 1981) for fast simulations in the mid-infrared spec-

tral region. JURASSIC has been used for radiative transfer

simulations and trace gas retrievals for various IR limb in-

struments (Hoffmann et al., 2008, 2009; Weigel et al., 2010;

Ungermann et al., 2010) and for nadir sounders such as AIRS

(Hoffmann and Alexander, 2009; Grimsdell et al., 2010).
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JURASSIC has been extended with a scattering module

that allows radiative transfer simulations to be conducted in-

cluding single and multiple scattering on aerosol and cloud

particles (Grießbach, 2012; Griessbach et al., 2013). In this

study, we use Mie calculations to determine the optical prop-

erties extinction coefficient, scattering coefficient, and phase

function of cloud and aerosol particles. For the simulations

presented here, we use a setup described in detail by Griess-

bach et al. (2014) with slight modifications. Here, the spectral

sampling is 0.0625 cm−1 and the vertical sampling is 0.5 km.

3 Aerosol detection and ice cloud filtering

3.1 Aerosol and cloud detection

3.1.1 Index methods for aerosol and cloud detection

The CI is the standard method to detect clouds and aerosol

with MIPAS (Spang et al., 2001). It is defined as the ratio

between the mean radiances around the 792 cm−1 band with

strong CO2 emissions and the atmospheric window region

around 833 cm−1:

CI =
Ī1([788.25,796.25 cm−1])
Ī2([832.31,834.37 cm−1])

, (1)

where Ī1,2 is the mean radiance of each window. The CI

is a continuous value, where large values indicate clear air

conditions and small values indicate the presence of clouds

or aerosol. In previous studies CI values below 1.8–6 have

been used to indicate cloudy air and CI values above 6 indi-

cate clear air (Spang et al., 2004, 2012; Sembhi et al., 2012).

The CI detection threshold depends on altitude, latitude, and

season, mainly because of the water vapour continuum con-

tributing to the 833 cm−1 window radiance (Spang et al.,

2004; Sembhi et al., 2012). The effect of the water vapour

continuum is particularly pronounced at lower tropospheric

altitudes.

Because the water vapour continuum absorption decreases

with higher wavenumber (e.g. Roberts et al., 1976), we

looked for additional windows at higher wavenumbers in MI-

PAS band A in order to achieve an altitude-, latitude-, and

season-independent aerosol detection. For the selection of an

appropriate window, which cannot be directly adopted from

IR nadir measurements due to the strong trace gas emission

lines measured in the IR limb geometry, we considered MI-

PAS clear air radiance profiles between about 7 and 25 km

altitude. In the clear air profile in Fig. 1 bright colours in-

dicate high radiances due to trace gas emissions and dark

colours indicate atmospheric window regions with low radi-

ances. These atmospheric windows are especially suited for

aerosol detection, because trace gases have little impact here.

The broad window around 830 cm−1 with low radiances at

all altitudes is already used for the CI. Between about 940

and 970 cm−1 there are many narrow windows with low ra-

diances between CO2 lines. The broadest of these windows
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800 850 900 950
Wavenumber in cm-1

5

10

15

20

25

A
lt
it
u

d
e

 i
n

 k
m

Radiance in 
 W/(cm

2
 sr cm

-1
)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

4.0e-7

8.0e-7

1.2e-6

1.6e-6

2.0e-6

Figure 1. MIPAS radiances measured in profile 89 of orbit 48509

(around 48◦ S). This clear air case shows low radiances in the broad

window region around 830 cm−1 and multiple narrow windows be-

tween 950 and 970 cm−1.

is located between 960 and 961 cm−1. Therefore, we aver-

age over the 17 spectral points measured by MIPAS in this

window and define the aerosol index (AI) as

AI =
Ī1([788.25,796.25 cm−1])
Ī2([960.00,961.00 cm−1])

, (2)

where Ī1,2 is the mean radiance of each window.

In the stratosphere at altitudes from about 50 km down to

about 22 km we found a seasonal and diurnal cycle in the

radiances between 960 and 961 cm−1 and hence in the AI

(Fig. A1). This diurnal cycle and the differences between the

summer and the winter hemisphere are most likely caused by

non-local thermodynamic equilibrium (non-LTE) effects of

the CO2 laser bands between 950 and 970 cm−1 at altitudes

of 50 km and above (e.g. Timofeyev et al., 1995). In order to

filter out this non-LTE feature we combined the AI with the

CI, which is not affected by non-LTE effects, and defined the

aerosol cloud index (ACI) as the maximum value of both:

ACI = max(CI,AI). (3)

Below about 25 km the ACI generally corresponds to the

AI and above about 25 km it corresponds to the CI (Fig. A1).

In order to demonstrate the benefits of the ACI and to de-

rive a fixed threshold value that is applicable to MIPAS mea-

surements, we investigated the behaviour of simulated and

measured ACI profiles and compared them with the corre-

sponding CI profiles.

3.1.2 Simulations

In the radiative transfer simulations we focused on clear

air and cloud simulations at altitudes between 5.5 and

19.5 km with a 0.5 km vertical sampling. We considered po-

lar winter, polar summer, midlatitude, and tropical atmo-

spheric conditions (Remedios et al., 2007) without any back-

ground aerosol. The simulation results for clear air condi-

tions (Fig. A3) show that the AI is significantly larger than
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the CI. They also show an altitude dependence for the CI but

also for the AI/ACI especially at altitudes below 10 km. At

altitudes above about 15 km the CI and AI converge towards

each other. In the polar summer atmosphere they intersect at

17 km, which means that the ACI corresponds to the CI at

altitudes above.

For the cloud simulations we placed 1 km thick ice cloud,

sulfate aerosol, and volcanic ash layers at 6–7, 9–10, 13–14,

and 17–18 km altitude in polar winter, polar summer, midlat-

itude, and tropical atmospheric conditions. For the ice cloud,

volcanic ash, and sulfate aerosol simulations we assumed

various realistic combinations of particle sizes, concentra-

tions, and extinctions given at 948.5 cm−1 (see Tables 3–5 in

Griessbach et al., 2014). The simulated extinction range was

1×10−3–1, 1×10−3–5×10−1, and 1×10−4–1×10−2 km−1

for ice, volcanic ash, and sulfate aerosol, respectively. The

considered mode radii were 0.3–96, 0.1–5, and 0.01–1.5 µm,

respectively. Examples of simulated profiles for ice, volcanic

ash, and sulfate aerosol are shown in Figs. A5 to A7.

While for clear air the AI/ACI values are systematically

larger than the CI values both have similar values in case of

sulfate aerosol and volcanic ash at cloud altitude. In some

cases the AI becomes smaller than the CI, which means that

it is even more sensitive towards the aerosol. Also, the de-

viation from the clear air profile is stronger for the AI than

for the CI. For ice clouds, however, the CI is systematically

smaller than the AI/ACI, which means that the CI is more

sensitive towards ice. Since we focus on aerosol detection,

this is not an issue for our study. More details on the simu-

lated CI, AI, and ACI profiles and its sensitivity are discussed

in the Appendix Sect. A3.

To derive an ACI aerosol/cloud detection threshold value

we considered the simulated clear air profiles and the MIPAS

measurement geometry after the modification in 2005 that

reached down to about 10 km in the tropics and about 7 km in

the polar regions. In the simulations the ACI is always larger

than 7 in the polar winter atmosphere. In the polar summer

and midlatitude atmosphere the ACI is larger than 7 at 7 km

and above and in the equatorial atmosphere it is larger than

7 at 9 km and above. This means that a fixed ACI threshold

value of 7 will be applicable to MIPAS measurements be-

tween 2005 and 2012 for the detection of aerosol.

3.1.3 Measurements

Examples of the CI (Fig. 2b), the AI (Fig. 2c), and the ACI

(Fig. 2d) are shown as a function of altitude along a sin-

gle MIPAS orbit (Fig. 2a) measured on 18 August 2011. In

mid-August most of the northern hemispheric stratosphere

was affected by a sulphate aerosol layer caused by the Nabro

eruption in June 2011 (Bourassa et al., 2012; Fromm et al.,

2014). Two months after the eruption of the Nabro volcano

this layer was diluted, so that it was invisible to IR nadir mea-

surements (Fig. 2f) and to the CALIPSO operational product

(NASA, 2016) but visible to OSIRIS solar scattering mea-

surements (Bourassa et al., 2012) and to MIPAS (Fig. 2d, e)

as discussed below.

For the detection of aerosol and clouds along a MIPAS or-

bit we mainly rely on the established CI. Here we briefly

discuss the purposes and shortcomings of the different CI

thresholds for the example of a particular MIPAS orbit

(Fig. 2b). A fixed CI threshold of 1.8 (CI below 2 shown

in yellow) is used for cloud clearing for trace gas profile re-

trievals by ESA (Spang et al., 2004). This threshold captures

tropospheric clouds only and PSCs in the Antarctic but not

a volcanic aerosol layer in the northern hemispheric UTLS

like the one caused by Nabro. Also, a fixed CI threshold of

4.5 (yellow, orange, red), which is used for more conservative

cloud filtering, mainly captures PSCs (Höpfner et al., 2009),

subvisible cirrus clouds (SVCs) (Spang et al., 2015), and tro-

pospheric clouds but not the volcanic aerosol layer. A fixed

CI threshold of 6 (yellow, orange, red, dark red) captures the

UTLS aerosol layer but mistakes cloud-free regions (profiles

0–3, 56–60, and 92–95; see comparison with IR nadir data

below) as cloudy. This feature of the CI of becoming smaller

at lower altitudes in cloud-free conditions is addressed by

Sembhi et al. (2012), providing a variable CI threshold def-

inition at altitudes above 10 km. Here we used a simplified

variable CI threshold based on Sembhi et al. (2012). The

details are given in Appendix A1. This most advanced CI

threshold definition (black crosses in Fig. 2b and d) allows

cloudy and cloud-free tropospheric regions as seen by IR

nadir instruments (Fig. 2f) to be discriminated and captures

the UTLS aerosol layer as observed by OSIRIS.

Figure 2 suggests that a fixed ACI with values smaller

than 7 allows tropospheric clouds as well as the stratospheric

aerosol layer caused by the Nabro eruption to be detected.

Hence, we assessed the performance of the ACI with a fixed

threshold value of 7 for the detection of aerosol and clouds

by comparing the ACI aerosol/cloud detections with CI cloud

detections relying on the thresholds presented by Sembhi

et al. (2012) for altitudes above 10 km combined with a fixed

CI threshold of 2 at 10 km and below (black crosses in Fig. 2b

and d). In Fig. 2b and d the profiles 0–3, 56–60, and 92–95

are identified as clear air by both the CI and the ACI. The

UTLS aerosol layer is also captured by both. However, the

CI and the ACI cloud/aerosol detections are not completely

identical. Below 10 km the CI with a threshold of 2 iden-

tifies slightly less clouds than the ACI with a threshold of

7. Examples can be found in profiles 16, 18, and 19 around

10 km and between profiles 30 and 40, where the CI detects

clear air down to the lowest tangent altitude, whereas the ACI

indicates clouds at the lowest tangent altitude. Above 10 km

there are a few profiles where the CI identifies clouds/aerosol

but not the ACI and vice versa (e.g. profiles 5, 54, 41–44).

However, the main differences can be seen in profiles 16–18,

where the CI indicates clouds/aerosol down to the tropopause

whereas the ACI indicates a stratospheric aerosol layer with

clear air below, and between profiles 23 and 35, where the CI

www.atmos-meas-tech.net/9/4399/2016/ Atmos. Meas. Tech., 9, 4399–4423, 2016
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indicates a thin stratospheric aerosol layer whereas the ACI

indicates aerosol down to the tropopause.

The tropospheric aerosol/cloud detections of the CI and

ACI are confirmed by geostationary IR nadir measurements

by MTSAT (15:00 UTC), IODC (18:00 UTC), and GOES

East (15:00 UTC) (the IR nadir images were obtained from

NERC Satellite Receiving Station, Dundee University, Scot-

land, http://www.sat.dundee.ac.uk/) along the orbit track

(Fig. 2f) and closest to the MIPAS measurement time (15:05–

16:45 UTC). In the IR nadir images clear air is indicated by

dark/black colours, high-altitude clouds are bright white, and

low-altitude clouds are indicated by greyish colours. For the

clear air profiles 0–2 north west of Australia (22–20◦ S), 53–

60 west of South America (2◦ N–23◦ S), and 92–95 over the

Indian Ocean the IR nadir images show only low-altitude

clouds, which are below the lowest tangent altitude of MI-

PAS. Over Asia (7◦ S–15◦ N) many high-altitude clouds are

present (profiles 4–15). Over northern China and Mongo-

lia there is a gap in the high-altitude clouds (profiles 17–

18). Over North and Central America (10–60◦ N) there are

patchy cloud patterns, which is also reflected in the alternat-

ing cloudy and clear air profiles (profiles 38–51) measured

by MIPAS. From 26 to 60◦ S (profiles 61–70) there is a large

field of high-altitude clouds. At latitudes higher than 60◦ the

results from geostationary images become uncertain, hence

they are not discussed here. A more detailed assessment of

the detection sensitivity and altitude information accuracy of

the MIPAS measurements of the UTLS aerosol layer will be

presented in a future study.

3.1.4 Discussion of the ACI detection threshold value

The simulations as well as the comparison with the most sen-

sitive variable CI threshold values indicated that a fixed ACI

value of 7 is an appropriate threshold value. Hence, in the fol-

lowing we use the ACI with a fixed threshold value of 7 down

to 7–9 km as an alternative to the CI with variable thresholds

above 10 km and a fixed threshold of 2 below 10 km. The ex-

ample (Fig. 2) shows the advantage of the ACI, namely to

have a fixed threshold that is sensitive to thin aerosol layers

and thick clouds, while not mistaking tropospheric clear air

as cloudy.

For the measurements before 2005 we also analysed al-

titudes below 7–9 km. For these altitudes the simulations

in Sect. 3.1.2 indicated that the ACI for clear air falls be-

low 7 at altitudes below 7–9 km. However, we often found

ACI values significantly larger than 7 down to the lowest

tangent altitudes (Figs. A2, A4) in the MIPAS measure-

ments before 2005. As the most likely reason for the dis-

crepancy between the measurements and simulations below

9 km we identified the water vapour continuum assumed

in the simulations. On the one hand, we used climatolog-

ical water vapour profiles that inherently do not cover the

complete variability in the atmosphere; on the other hand,

in JURASSIC the Mlawer–Tobin–Clough–Kneizys–Davies

1.10 scheme (MT_CKD) (Clough et al., 2005) is used for

the water vapour continuum representation. This scheme was

found to represent real conditions with insufficient accuracy

at lower altitudes (Griessbach et al., 2013). Hence, the ACI

has the potential to be also applied to the MIPAS measure-

ments before 2005, where the lowest tangent altitude reached

down to nearly 5 km at all latitudes.

3.2 Ice cloud filtering

3.2.1 Window selection

For the separation between aerosol and ice clouds by IR nadir

measurements spectral windows around 8.5, 11, and 12 µm

(1176, 909, 833 cm−1, respectively) are employed (Acker-

man, 1997; Guehenneux et al., 2015). For these windows

the optical properties of ice differ most strongly from aerosol

such as volcanic ash, soil-derived aerosol, and sulfate aerosol

(Ackerman, 1997). For the IR limb emission measurements

of MIPAS we identified three narrow windows that have very

little interference with trace gases and exploit the spectral

differences between the optical properties of ice and, in our

case, volcanic aerosol:

– 830.6–831.1 cm−1

– 960.0–961.0 cm−1

– 1224.1–1224.7 cm−1.

Hereafter we refer to these windows as the 830, 960, and

1224 cm−1 windows.

The optical properties, i.e. extinction coefficient (βe) and

single scattering albedo, are determined by the microphysi-

cal properties of the particles, i.e. complex refractive index,

particle size, and particle shape. The imaginary and real parts

of the complex refractive indices of ice (Warren and Brandt,

2008), sulfate aerosol (Hummel et al., 1988), and two repre-

sentatives of volcanic ash (Volz, 1973, volcanic ash; Pollack

et al., 1973, basalt) are shown in Fig. 3a and b, where our

windows are indicated by grey bars. The imaginary part of

the refractive index (Fig. 3a) has a positive spectral gradi-

ent for ash and sulfate between 830 and 960 cm−1, whereas

the spectral gradient of ice is negative. Also, between 830

and 1224 cm−1 the spectral gradient is positive for sulfate

but negative for ice. For the real part of the refractive indices

(Fig. 3b), the spectral gradient between 830 and 960 cm−1 is

positive for ash and sulfate but negative for ice. The spectral

gradient between 960 and 1224 cm−1 is negative for ash and

sulfate but positive for ice.

As the imaginary part of the complex refractive index de-

scribes the absorption and the real part describes the scat-

tering, these differences between ice clouds and aerosol (vol-

canic ash and sulfate aerosol) propagate to the optical proper-

ties (Fig. 3c and d). To calculate the extinction coefficient and

single scattering albedo we used the same log-normal size

distributions as Griessbach et al. (2014) for sulfate aerosol,
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Figure 2. MIPAS profiles of orbit 49508 (a) measured on 18 August 2011 for (b) cloud index, (c) aerosol index, and (d) aerosol–cloud

index, (e) aerosol–cloud index. Black crosses denote cloud/aerosol detections using a fixed CI threshold of 2 below 10 km and the variable

threshold definition following (Sembhi et al., 2012) above 10 km. White curves denote the thermal tropopause according to the World

Meteorological Organization (WMO) definition along the orbit track derived from ERA-Interim data (Dee et al., 2011). In polar winter the

thermal tropopause is often not present (Zängl and Hoinka, 2001). Ice and optically thick clouds (grey body radiators) are shown in grey.

The IR nadir measurements of MTSAT, IODC, and GOES-East (f) are shown temporally closest to the MIPAS measurements. The IR nadir

images were obtained from NERC Satellite Receiving Station, Dundee University, Scotland, http://www.sat.dundee.ac.uk/.
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Figure 3. Microphysical properties of sulfate aerosol, ice, and two types of volcanic ash. (a, b) Complex refractive indices and their optical

properties. (c) Extinction coefficient. (d) Single scattering albedo. The vertical lines indicate atmospheric window regions.

volcanic ash, subvisible cirrus (small ice particles), and trop-

ical cirrus (large ice particles). The extinction coefficient

spectra (Fig. 3c) were normalised to 1 at 960 cm−1. For sul-

fate aerosol and ash they exhibit similar spectral gradients as

the imaginary part of the refractive index. However, in addi-

tion to the refractive indices, the particle size has an impact

on the optical properties. For large ice particles the extinction

coefficient spectrum is flat and for small ice particles it ex-

hibits a pronounced minimum around 960 cm−1. The single

scattering albedo depends on particle size and wavenumber

(Fig. 3d). The scattering contributions range from 30 to 80 %

for small ice particles and are nearly constant around 55 %

for large ice particles. The scattering contribution of the sul-

fate aerosol is generally below 10 % and for volcanic ash it

ranges from 15 to 80 %. Hence, scattering effects can not be

neglected for any particle type discussed here.

3.2.2 Simulations

Having identified three window regions with small radiance

contributions by atmospheric trace gases and with signif-

icant differences in the optical properties for ice and vol-

canic aerosol, we expected that these differences could also

be found in the radiance spectra measured by MIPAS. For

IR nadir measurements it is common practice to use bright-

ness temperature differences (BTDs) for the discrimination

between volcanic or soil-derived aerosol and ice clouds (e.g.

Prata, 1989a; Ackerman et al., 1990; Ackerman, 1997). In

order to identify characteristic patterns in BTD correlations

for IR limb emission measurements, we evaluated the ra-

diative transfer simulations for clear air, ice, volcanic ash,

and sulfate aerosol under various atmospheric conditions

(3.1.2). In contrast to IR nadir BTD analyses that often cor-

relate 11–12 µm with 8–11 µm (e.g. Ackerman et al., 1990;

Hong et al., 2010), we found for MIPAS IR limb spectra

the clearest correlation patterns for the BTDs between the

830 and 1224 cm−1 (12.0–8.2 µm) windows and the 960 and

1224 cm−1 (10.4–8.2 µm) windows.

The simulation results are shown for all realistic ice cloud

(Fig. 4a), sulfate aerosol (Fig. 4b), volcanic ash (Fig. 4c), and

“clear air” (Fig. 4d) scenarios. The tangent altitudes of the

simulations range from 6 to 19.5 km, which is from above to

below the simulated clouds. Except for the clear air simula-

tions only the scenarios for ACI < 7 are shown. In the simu-

lations, the individual results for the BTDs are colour-coded

by the ACI because we found a clear sensitivity to the ACI

in the simulations. The solid black lines are nearly identical

to the diagonal and split the plot into two parts (upper and

lower part). Here, we use them to guide the reader through

each panel of Fig. 4. In fact, these are our threshold func-

tions that will be derived in Sect. 3.2.4.

The ice simulations (Fig. 4a) comprise extinctions rang-

ing from 0.1 to 1 km−1 and mode radii ranging from 0.3 to

96 µm. They fall in the middle of the BTD correlation plot,

forming a longish shape and reaching from negative BTDs

to positive BTDs (about −45 to 5 K) on both axes. Nearly all

simulations fall into the lower part (below the nearly diagonal

separation lines). In the little inset of Fig. 4a we filtered the
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comprehensive simulations for realistic combinations of par-

ticle sizes and extinctions (number concentrations). Hence,

we removed all simulations with mode radii of 6 µm and be-

low and extinctions of 5 × 10−2 km−1 and larger from the

polar summer, midlatitude, and tropical atmosphere because

we consider such small ice particle sizes and high extinc-

tion (number concentrations) only likely in PSCs (Deshler

et al., 1994). SVCs may have such small ice particle sizes, but

they inherently have lower extinctions (Iwasaki et al., 2007;

de Reus et al., 2009; Frey et al., 2011). The ice simulations

show a dependence on the ACI, where optically thick scenar-

ios (ACI < 2) form a narrow cluster below the black line at

BTDs between 0 and −20 K. Optically less dense ice scenar-

ios (ACI > 2) usually have a lower BTD on both or only one

of both axes.

The sulfate simulations (Fig. 4b) performed for extinctions

between 1 × 10−4 and 1 × 10−2 km−1 and mode radii be-

tween 0.01 and 1.5 µm have ACI values ranging from larger

than 2 to larger than 7. None of the scenarios that include

post-Pinatubo particle sizes and concentrations gets opti-

cally thick. Scenarios for the 1 km thick sulfate aerosol layer

with an extinction coefficient of 1 × 10−4 km−1 at 947 cm−1

(10.5 µm) have ACIs larger than 7 and hence would be iden-

tified as clear air. Scenarios with extinction coefficients of

5 × 10−4 km−1 and higher have ACIs below 7. They cluster

above the diagonal at low BTDs (smaller than −20 K on the

x axis). The scenarios that fall in the lower part of the plot are

all for tangent altitudes below 8 km. Comparing the sulfate

aerosol simulations with the ice cloud simulations, there is

nearly no overlap except for very few scenarios below 8 km.

For the simulations of volcanic ash we used the “basalt”

refractive indices (Pollack et al., 1973) (Fig. 4c) and the

“volcanic ash” refractive indices (Volz, 1973) (not shown).

The simulations that were performed for extinctions between

1×10−3 and 5×10−1 km−1 and mode radii between 0.1 and

5 µm cover optically thick (ACI < 2) to thin conditions. The

simulated scenarios form a diagonal shape in the middle of

the BTD correlation plot and extend from the lower left to the

upper right of the plot. Also, a dependence on the ACI, sim-

ilar to the ice cloud simulations, with high values (optically

thin) at bottom left and small values (optically thick) at top

right can be seen. Several ash simulations fall in the lower

part of the plot and are congruent with the ice simulations.

Hence, only the ash scenarios that fall in the upper part of

the plot are separable from ice clouds. In the simulations we

found a particle size dependency (not shown), where smaller

particles fall in the upper part and larger particles fall in the

lower part (ice region) of the plot. A size dependency for

detecting volcanic ash with IR limb emission measurements

has also been reported by Griessbach et al. (2014) with a

maximum detectable mode radius of 1.5 µm for volcanic ash

(Volz, 1973). Here, for volcanic ash we found scenarios with

a mode radius of 5 µm that do not overlap with ice. From the

simulations presented here, we derived that volcanic ash par-

ticles with mode radii between 0.3 and 5 µm and extinction

coefficients between 1×10−3 and 5×10−1 km−1 can be dis-

criminated from ice clouds at altitudes down to 6 km. Com-

paring the ash simulations with the sulfate simulations, there

is substantial overlap. Hence, further criteria are required

for the discrimination between sulfate aerosol and volcanic

ash. As the focus here is on filtering out ice spectra from all

cloudy spectra, we do not pursue an aerosol classification at

this point.

Comparing the clear air simulations for the four atmo-

spheres (polar winter, polar summer, midlatitudes, equato-

rial) at altitudes between 6 and 19.5 km (Fig. 4d) with the

ice and aerosol simulations shows that there is an overlap.

As already described in Sect. 3.1, there are a few simulated

clear air scenarios with ACI < 7 below 9 km. However, all

clear air scenarios at altitudes below 14 km fall in the lower

part (ice region) of the BTD correlation plot and hence will

be filtered out together with the ice scenarios. Some scenar-

ios above 14 km fall in the upper part of the BTD correlation

plot, but they all have an ACI > 10. Using an ACI < 7 as a

pre-condition, these clear air scenarios will be filtered out

also.

3.2.3 Measurements

Having expectations from the simulations on what the BTD

correlations look like for ice clouds, sulfate aerosol, and vol-

canic ash, we show four selected cases of UTLS aerosol mea-

surements in order to verify the simulations (Fig. 5). For each

case we used all measurements of an entire day, which is

about 14 orbits, in the latitude range given below and at al-

titudes between MIPAS lowest tangent altitude (about 7 km)

and 25 km. For the longitude range we did not introduce a

limitation in order to include also clear air and ice clouds. In

Fig. 5 all spectra with cloud/aerosol detections (ACI < 7) are

shown. Targeting at successfully filtering out ice clouds, we

expect that the aerosol clearly stands out from the ice region

as indicated by the simulations. For better comparison we

also added the nearly diagonal separation lines introduced in

Fig. 4.

For 17 May 2011 (Fig. 5a) we expected to find only ice

clouds after filtering out the clear air spectra in the en-

tire Southern Hemisphere at latitudes between 0 and 60◦ S

(since there are no reports of volcanic eruptions; Smithsonian

Global Volcanism Programme, 2016). As in the ice cloud

simulations (Fig. 4), the measurements with ACI < 7 form

a relatively narrow diagonal group with BTDs ranging from

0 to −40 K on both axes.

For 29 July 2011 (Fig. 5b) we expected to find sulfate

aerosol from the Nabro eruption covering the entire north-

ern hemispheric UTLS (0–90◦ N) (Bourassa et al., 2012) and

ice clouds as well. In the measurements with ACI < 7 we

again observe a relatively narrow diagonal group just below

the separations lines as in the ice simulations. In addition

there is a second cluster with ACI values between 5 and 7

and at BTDs between −30 and −50 K on the abscissa and
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Figure 4. Simulated brightness temperature difference correlations for (a) ice clouds, (b) sulfate aerosol, (c) volcanic ash (here basalt from

Pollack et al. (1973) is shown), and (d) clear air. The ice cloud simulations are shown for mode radii ranging from 0.3 to 96 µm. In the small

inset ice simulations are only shown for mode radii ranging from 12 to 96 µm. For the clear air simulations the atmosphere type is indicated

by the following symbols: polar winter – crosses; polar summer – diamonds; midlatitudes – squares; equatorial – circles. The black lines are

the ice separation thresholds, where the solid part of each line denotes the relevant part for the discrimination between aerosol and ice.

between −20 and −40 K on the ordinate, just as expected

from the simulations for sulfate aerosol (Fig. 4b).

For 16 June 2011 (Fig. 5c) we expected to find volcanic

ash at latitudes between 0 and 60◦ S originating from the

eruption of the Puyehue–Cordón Caulle (Klüser et al., 2013)

and ice clouds as well. As seen in the two cases before, in the

measurements with ACI < 7 there is again a relatively narrow

diagonal group just below the separation lines as predicted

by the ice simulations. Furthermore, there are many spectra

above the separation lines forming an arc-shaped structure

and with ACI values ranging from below 2 to 7. These mea-

surements fall in the region covered by the volcanic ash sim-

ulations (Fig. 4a).

For 29 January 2011 (Fig. 5d) we again expected to find

tropospheric ice clouds after filtering out clear air spectra and

polar stratospheric clouds in the Northern Hemisphere (0–

90◦ N). As in the cases before, there is the narrow diagonal

ice group with ACI values ranging from below 2 to 7, but

there is also a second cluster just above the separation lines

with ACI values ranging from below 2 to 7. If only mea-

surements between 0 and 60◦ N are considered, the second

cluster disappears (Fig. A8). This example demonstrates that

non-ice PSCs can also be separated from ice PSCs using this

BTD correlation. To determine the non-ice PSC types, par-

ticle sizes and concentrations that can be separated from ice

PSCs with this method require detailed simulations which

are not within the scope of this study. The classification of

PSCs measured by IR limb sounders is the subject of multi-

ple studies (Spang et al., 2012, 2015, and references therein).

3.2.4 Definition of the ice filtering threshold and

discussion

As the simulations and measurements showed, the ice sce-

narios fall in the lower half of the BTD correlation plot and

a substantial number of the aerosol simulations (volcanic ash

and sulfate aerosol) falls in the upper half (Figs. 4 and 5).

In order to deduce an ice filtering threshold for MIPAS mea-

surements, we analysed the 2011 MIPAS data on a day-by-

day basis and analysed monthly and annual count statistics.

From these we found that filtering out the ice clouds is best

done with two threshold functions. For ACI values below 4

the upper edge of the ice cluster (BTDs larger than 30.4 K on

the x axis) is very sharp in the simulations (Fig. 4a) as well

as in the measurements (Fig. 5). The corresponding threshold

function is

BTD960−1224 = 0.87 × BTD830−1224 + 6K. (4)
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Figure 5. MIPAS brightness temperature difference correlations for selected scenarios: (a) ice clouds (0–60◦ S), (b) Nabro sulfate aerosol

(0–90◦ N) and ice clouds, (c) Puyehue–Cordón Caulle volcanic ash (0–60◦ S) and ice clouds, and (d) PSCs (0–90◦ N) and tropospheric ice

clouds. All figures comprise all orbits (about 14) measured on the day given on top of each plot. The black lines are the ice separation

thresholds derived from the observations, where the solid part of each line denotes the relevant part for the discrimination between aerosol

and ice.

For ACI values larger than 4 the BTD scatter plot can

become quite diffuse for 2011 because there were three

volcanic eruptions (Grímsvötn, Puyehue–Cordón Caulle,

Nabro) that injected a substantial amount of SO2 and vol-

canic ash into the atmosphere. We also analysed the mea-

surements from 2003, a year with very little volcanic emis-

sions during the MIPAS measurement period. For BTDs be-

low −30.4 K we obtained the following threshold function:

BTD960−1224 = 1.33 × BTD830−1224 + 20 K. (5)

To identify aerosol in the MIPAS data we used the con-

dition that the BTDs must exceed at least one of the two

threshold functions given in Eqs. (4) and (5) (in Fig. 5 the

black solid lines must be exceeded).

For the MIPAS orbit discussed in Sect. 3.1 the result us-

ing our ice filtering thresholds is shown in Fig. 2e. Figure 2e

shows the ACI as in Fig. 2d but indicating in grey all spectra

that fall in the ice region. As expected (see Sect. 3.1), nearly

all aerosol/cloud detections in the northern hemispheric tro-

posphere are identified as ice clouds. On top of these ice

clouds there is a layer in the UTLS with ACI values between

4 and 7, which is the Nabro sulfate aerosol. In the Antarc-

tic region a large fraction of the stratospheric clouds falls

in the ice region, which can be expected in southern hemi-

spheric winter, but around profiles 83–85 non-ice PSCs are

also identified, consistent with the report of a NAT belt in

the region downstream of the Antarctic peninsula (Höpfner

et al., 2006).

Considering Eqs. (4) and (5) derived from 2 years of MI-

PAS measurements (2003, 2011) and the ice simulations

(Fig. 4a), it becomes obvious that the line corresponding to

Eq. (4) is very close to the simulations and that there is a gap

between the line corresponding to Eq. (5) and the simulation

results. Comparing the measurements (Fig. 5) and the simu-

lations in more detail, we found that the narrow ice pattern

below the threshold functions in the measurements is mostly

reproduced by the ice cloud simulations. Especially for ACI

values below 2 simulations and measurements agree well.

However, for higher ACI values there are many scenarios

that fall in a range that was not covered by the measurements

(about 0 to −40 K on the abscissa and −20 to −50 K on the

ordinate). These scenarios have in common that the assumed

mode radius of the particles is 6 µm or smaller and the extinc-

tion coefficient is smaller than or equal to 1×10−2 km−1. We

considered such small ice particles to be likely for ice PSCs

(Deshler et al., 1994) and possibly SVCs (Iwasaki et al.,

2007; de Reus et al., 2009; Frey et al., 2011). However, in the

tropics and at midlatitudes we could not find MIPAS mea-

surements that fall into this range. Hence, according to the

MIPAS measurements 1 km thick ice clouds with mode radii

smaller than 6 µm seem very unlikely in the tropics and at

midlatitudes. Only in the polar regions, which are excluded
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in Fig. 5a, b, c, did we find MIPAS measurements that show

the same BTDs as the ice cloud simulations for mode radii

down to 3 µm.

As already discussed in Sect. 3.2.2, there are a few simu-

lated scenarios in the tropical atmosphere for the 18 km ice

cloud that slightly exceed the upper threshold function. For

these particular scenarios we assumed mode radii of 6 µm or

less and the extinction coefficients are between 5×10−2 and

1 km−1. In the tropics mode radii of 6 µm or less can only

be found in SVCs. However, SVCs do not have such high

particle concentrations and extinctions (Iwasaki et al., 2007;

de Reus et al., 2009; Frey et al., 2011). Hence, in the inset

of Fig. 4a the simulation results are shown only for ice par-

ticle size distributions with mode radii larger than 6 µm. The

pattern of these ice cloud simulations is in very good agree-

ment with the measurements shown in Fig. 5. Further all,

but 7 out of 3333, simulated scenarios fall below the thresh-

old functions derived from the measurements. These seven

scenarios occur only for the ice cloud at 18 km altitude in

the tropics and they all have a BTD larger than −25 K on

the abscissa. We checked the MIPAS measurements between

20◦ (30◦) N and 20◦ (30◦) S and found that in 48 (62) out

of 58 945 (78 563) cloudy profiles in 2011 the upper thresh-

old was exceeded (both 0.08 %). In 2003, a year with less

volcanic aerosol, only 15 (18) out of 56 375 (74 767) (0.02–

0.03 %) cloudy profiles exceeded the upper threshold. Al-

though we do not consider 0.02–0.08 % to be a strong evi-

dence in the measurements that tropical high-altitude clouds

consisting of small ice particles could exceed the ice separa-

tion threshold, we would like to point out that there is at least

the theoretical possibility.

The sulfate aerosol simulations (Fig. 4b) form a group just

above the lower threshold function. This group matches very

well the sulfate aerosol observations after the Nabro eruption

(Fig. 5b). There are also a few scenarios for which the sim-

ulated BTD does not exceed the aerosol detection threshold.

These scenarios occur all at tangent altitudes below 8 km.

However, in the MIPAS measurements we found numerous

cases of aerosol detection below 8 km altitude. This is most

likely due to the fact that the aerosol layers in reality have

a larger vertical extent than the 1 km assumed in the simula-

tions. This effect and an analysis of the altitude information

including comparisons with lidar measurements will be dis-

cussed in detail in a separate study.

The volcanic ash simulations using “basalt” refractive in-

dices reported by Pollack et al. (1973) (Fig. 4c) represent the

volcanic ash measurements after the Puyehue–Cordón Caulle

eruption (Fig. 5c) better than simulations using the “volcanic

ash” refractive indices reported by Volz (1973). Thus, the

volcanic ash simulations are very sensitive to the refractive

index data and therefore to the type of volcanic ash present.

4 Examples for application and verification

We applied our new aerosol detection method to the MI-

PAS measurements in 2011. We detected aerosol mainly after

volcanic eruptions. In Fig. 6 three examples for aerosol de-

tections after the Grímsvötn, Puyehue–Cordón Caulle, and

Nabro eruption are presented. To verify our results we com-

pared the MIPAS aerosol detections with SO2 and ash de-

tections by AIRS. Note that gas-phase SO2 is emitted by

volcanic eruptions and conversion to liquid sulfate (H2SO4)

starts immediately after injection into the atmosphere by ox-

idation (von Glasow et al., 2009). For our comparisons of the

horizontal plume locations we used the AIRS SO2 index and

the AIRS ash index by Hoffmann et al. (2014). High SO2

index values indicate high SO2 concentrations and high ash

index values indicate high ash concentrations.

A U-shaped highly confined SO2 filament was measured

by AIRS on 27 May 2011, 6 days after the initial erup-

tion of the Grímsvötn volcano (Fig. 6a). The black dashed

curves indicate the MIPAS tracks measured between 00:00

and 12:00 UTC. Symbols along the MIPAS track indicate

aerosol detections. The symbols are coloured in shades of

blue and green representing the aerosol observation top alti-

tude. In addition to our new aerosol detection method, we

looked for volcanic ash using the volcanic ash detection

method reported by Griessbach et al. (2014). As we could not

detect volcanic ash in all four profiles, the volcanic aerosol

particles are most likely sulfate aerosol. The SO2 measured

by AIRS is the precursor gas to sulfate aerosol measured by

MIPAS. Since both SO2 and sulfate aerosol can be detected,

the SO2 oxidised only partially during the 6 days after the

eruption and the AIRS and MIPAS measurements agree well

in location. While the AIRS data provide a high-horizontal-

resolution picture of the volcanic plume the MIPAS data add

altitude information.

In Fig. 6b the Nabro SO2 plume is shown on 17 June 2011,

3 days after the initial eruption. The MIPAS tracks were

measured between 00:00 and 12:00 UTC. The Nabro emis-

sions were entrained in the Asian monsoon circulation and

first were transported northwards and later on eastwards.

Where the MIPAS tracks cross the SO2 plume measured by

AIRS, MIPAS detects aerosol. In the MIPAS measurements

we found mineral material using the MIPAS ash detection

method (Griessbach et al., 2014) in 2 out of 20 aerosol pro-

files at altitudes below 10 km (over the Arabian peninsula

and the Iranian plateau). Based on this finding and studies

by Fairlie et al. (2014) and Penning de Vries et al. (2014)

we conclude that the Nabro plume mainly consists of sulfate

aerosol, especially at higher altitudes. There are also some

aerosol detections over the North Sea and Siberia at altitudes

below 12 km that do not coincide with enhanced SO2. Based

on MIPAS measurements we deduced that these aerosol par-

ticles originated from the Grímsvötn eruption about 1 month

earlier. It is expected that 4 weeks after this eruption the

emitted SO2 is completely oxidised and converted to sulfate
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Figure 6. AIRS volcanic emission contours and MIPAS aerosol detections (coloured circles). (a) AIRS SO2 index for Grímsvötn (27 May

2011, a.m.); (b) AIRS SO2 index for Nabro (17 June 2011, a.m.); (c) AIRS SO2 index for Puyehue–Cordón Caulle (9 June 2011, p.m.);

(d) AIRS ash index for Puyehue–Cordón Caulle (9 June 2011, p.m.). Non-ice PSCs in the Antarctic at altitudes above 18 km are coloured in

black. The red triangles indicate the location of the respective volcanoes. Please note the different altitude scales.

aerosol (von Glasow et al., 2009) and hence can no longer

be seen in the AIRS SO2 measurements (Hoffmann et al.,

2016).

The AIRS SO2 index (Fig. 6c) and the ash index (Fig. 6d)

were measured on 9 June 2011, 3 days after the initial erup-

tion of the Puyehue–Cordón Caulle. The corresponding MI-

PAS tracks were measured between 12:00 and 24:00 UTC.

Aerosol detections above 18 km are coloured in black and

are related to non-ice PSCs that are present in each Antarc-

tic winter (Pitts et al., 2013). Due to a strong jet stream the

volcanic emissions were transported eastwards very quickly.

The SO2 plume (Fig. 6c) stretches from the southern tip of

Africa to the Indian Ocean just south-west of Australia. The

Puyehue–Cordón Caulle plume was rich in ash as shown by

the AIRS ash index (Fig. 6d), which shows an ash plume ex-

tending from west of Australia over South Africa and along

the way back to South America. Between South America

and South Africa there is no enhanced SO2 visible in the

AIRS data. The comparison with the MIPAS aerosol detec-

tions based on the method presented here shows that very

close to the eastern plume front there are six MIPAS profiles

in a row indicating the presence of aerosol. These MIPAS de-

tections are slightly westward of the plume front measured

by AIRS, which is due to a temporal shift (up to 12 h) be-

tween the AIRS and MIPAS measurements. The comparison

of the MIPAS aerosol detections with the AIRS ash detec-

tions shows a good agreement (Fig. 6d). Using the MIPAS

ash detection technique (Griessbach et al., 2014) we found

ash in 10 out of 16 MIPAS aerosol profiles.

For the three examples of fresh volcanic plumes in the po-

lar, midlatitude, and tropical atmosphere we found that the

aerosol detection method introduced for IR limb emission

measurements (see Sect. 3) performs well and also agrees

well with AIRS volcanic emission measurements. However,

in contrast to AIRS volcanic emission measurements (ash

and SO2) the MIPAS volcanic emission measurements (com-

prising SO2 (Höpfner et al., 2013), ash (Griessbach et al.,

2014), and sulfate aerosol from this study) can trace volcanic

emissions in the form of ash and sulfate aerosol for much

longer timescales (e.g. from June 2011 until April 2012 in

case of the Nabro eruption, not shown). This is due to a

higher sensitivity of MIPAS to the aerosol and due to the

fact that SO2 is converted to sulfate aerosol on a timescale

of about 4 weeks. These examples also demonstrate that IR

limb emission measurements provide valuable altitude infor-

mation. In a recent visualisation study, Günther et al. (2016)

reconstructed 3-D volcanic emission plumes of the Nabro

and Puyehue–Cordón Caulle by combining MIPAS aerosol

and AIRS volcanic emission measurements with forward

and backward trajectories started at the location of MIPAS

aerosol detections.
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5 Summary and conclusions

We introduced a two-step method to detect aerosol in the tro-

posphere and stratosphere with IR limb emission measure-

ments. In the first step we identified a window region in the

MIPAS spectra that is sensitive towards aerosol and clouds.

In addition to the widely used CI that is very sensitive to

clouds, we defined the AI that is more sensitive to aerosol

by using the identified window at 960 cm−1. The AI has the

advantage of being less altitude dependent in the troposphere

than the CI. We combined the advantages of the AI in the

troposphere and the CI in the stratosphere in a new index, the

ACI, which is the maximum of the CI and the AI. The ACI

is more sensitive towards aerosol and provides a better con-

trast to clear air over the whole UTLS than the CI. Instead

of varying CI threshold values ranging from 2 to 6 depend-

ing on altitude, region, and season, we found that a constant

ACI threshold value of 7 is an appropriate global value for

the detection of enhanced aerosol and clouds.

In the second step we developed a method to discriminate

between ice clouds and aerosol for IR limb emission spectra

with an ACI below 7. We used measured MIPAS spectra and

simulations of optical properties for ice and volcanic aerosol

employing typical size distributions (volcanic ash and sulfate

aerosol) to identify appropriate windows for the discrimina-

tion. Three windows at 830, 960, and 1224 cm−1 that sam-

ple the contrasting behaviour of ice and aerosol are com-

bined by brightness temperature difference correlations. We

investigated the BTD correlations for the MIPAS measure-

ments and selected scenarios where we expected to find ice

clouds only, significant amounts of volcanic ash, volcanic

sulfate aerosol, or non-ice PSCs. From these measurements

we derived two threshold functions that separate between ice

clouds and aerosol in MIPAS measurements.

To corroborate and further characterise the threshold func-

tions we conducted radiative transfer simulations of ice

clouds and aerosol layers. The simulations showed that ice

clouds fall below the thresholds and aerosol can exceed the

thresholds. Only for the rare case of optically thick (βe ≥
5 × 10−2 km−1) ice clouds at 18 km altitude in the tropics

could the threshold function be exceeded (7 out of 3333 sce-

narios). However, we consider these scenarios to be very un-

likely and found this confirmed by the measurements. The

simulations further showed that all realistic sulfate aerosol

scenarios with βe (948 cm−1) > 1 × 10−4 km−1 above 8 km

tangent altitude can be discriminated from ice clouds. For

ash clouds the simulations showed that several scenarios

can be distinguished from ice clouds. Detectable ash cloud

scenarios had extinction coefficients (at 948 cm−1) between

1 × 10−3 and 5 × 10−1 km−1, mode radii between 0.3 and

5 µm, and reached down to 6 km tangent altitude.

A comparison of MIPAS measurements with horizontal

high-resolution AIRS SO2 and ash index measurements for

three strong volcanic eruptions in 2011 that were either char-

acterized by large SO2 (Grímsvötn, Nabro) or volcanic ash

emissions (Puyehue–Cordón Caulle) demonstrated the via-

bility of our aerosol detection method. This comparison and

a recent study (Günther et al., 2016) also point to the ad-

ditional benefit of MIPAS altitude-resolved volcanic aerosol

detection. The IR limb emission measurements can be used

to quickly assign an altitude to the volcanic plume filaments

measured by nadir instruments.

We consider our new aerosol detection method to be adapt-

able to other hyper-spectral IR limb instruments such as

CRISTA, CRISTA-NF, MIPAS balloon (MIPAS-B) (Oelhaf

et al., 1994), MIPAS-STRatospheric aircraft (MIPAS-STR)

(Woiwode et al., 2012), and Gimballed Limb Observer for

Radiance Imaging of the Atmosphere (GLORIA) (Friedl-

Vallon et al., 2014; Riese et al., 2014). Although MIPAS is

no longer operating there are 10 years of MIPAS measure-

ments available and the new aerosol detection method in con-

junction with the volcanic ash detection method (Griessbach

et al., 2014) opens up new perspectives for the analysis of

enhanced aerosol in the UTLS and volcanic eruptions based

on IR limb emission measurements.

6 Data availability

The data used for Figs. 1, 2, 4, 5, 6, A1, A2, A4, and A8

can be reproduced by downloading the MIPAS Level 1b cal-

ibrated radiances from ESA (2015) and applying the methods

described in this paper. The IR nadir images in Fig. 2f were

obtained from NERC Satellite Receiving Station, Dundee

University, Scotland (http://www.sat.dundee.ac.uk/). To gen-

erate Fig. 6 we used AIRS level1b radiances that are avail-

able at NASA (2015) and applied the index methods de-

scribed by Hoffmann et al. (2014). Access to the AIRS SO2

and ash index data can be obtained by contacting Lars Hoff-

mann (l.hoffmann@fz-juelich.de). Access to the complete

data record of the MIPAS aerosol detections and the radia-

tive transfer simulation results can be obtained by contacting

the leading author (s.griessbach@fz-juelich.de).
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Appendix A:

A1 Variable CI thresholds

The variable CI thresholds between 10 and 25 km used in

this study were derived from Fig. 2 in Sembhi et al. (2012).

Because of very similar threshold profiles at these altitudes,

we extracted the threshold profiles for three latitude bands

given in Table A1 and used them for the Northern and South-

ern hemispheres. At each altitude we used the smallest inte-

ger threshold value in the corresponding latitude band. In the

polar region we neglected the simulated profile for Antarc-

tic winter because it “shows a large degree of uncertainty”

(Sembhi et al., 2012).

A2 Aerosol and cloud detection

In the MIPAS measurements we found enhanced radiances in

the 960 cm−1 window in the stratosphere at 50 km and below

due to non-LTE effects of the CO2 laser bands (Timofeyev

et al., 1995). These radiances affect the AI and cause low

AI values that indicate incorrectly the presence of aerosol

and clouds at UTLS altitudes. The 830 cm−1 window is not

affected and therefore, as discussed in Sect. 3.1, we defined

the ACI. Figure A1 illustrates the differences between the CI

and the AI in the middle stratosphere. Comparing the CI and

AI with the ACI illustrates that in the middle stratosphere

the ACI is the CI and in the troposphere the ACI is the AI.

The spectra coloured in white are filtered out because the

radiances in at least one of the windows used in this study

were below the MIPAS noise:

N
√

n
, (A1)

where the MIPAS noise equivalent radiance N

is 3 × 10−4 W (m2 sr cm−1)−1 in band A and

2×10−4 W (m2 sr cm−1)−1 in band B (Kleinert et al.,

2007) and n is the number of spectral points.

Figure A1 shows the characteristic MIPAS measurement

geometry after 2005 where the lowest tangent altitude fol-

lows the slope of the tropopause with a high tropopause in

the tropics and a low tropopause in polar regions. The verti-

cal sampling in the UTLS is 1.5 km. The measurement geom-

etry before 2005 is shown for the ACI in Fig. A2, where the

vertical sampling in the UTLS is 3 km and the lowest tangent

altitude reaches down to about 6 km at all latitudes.

Table A1. Variable CI thresholds between 10 and 25 km derived

from Sembhi et al. (2012).

altitude/latitudes 0–40 40–65 65–90

10 3 3 3

11 3 4 4

12 4 5 5

13 5 5 5

14 5 5 5

15 5 5 5

16 5 5 5

17 5 5 5

18 5 5 5

19 5 5 5

20 6 5 4

21 6 5 4

22 6 5 3

23 6 5 3

24 6 5 2

25 6 5 2

A3 Simulated and measured profiles

In the following representative simulated and measured pro-

files for clear air, ice clouds, and aerosol are shown in order

to illustrate the behaviour of the CI, AI, and ACI and to dis-

cuss their differences.

The simulated clear air profiles for the CI and AI

(Fig. A3a) show an altitude dependence for the CI and the AI.

In the simulations the CI is getting slightly smaller between

20 and about 12 km altitude whereas the AI is getting larger.

Below 12 km altitude the CI and the AI are getting signifi-

cantly smaller with descending altitude. At altitudes below

20 km the ACI (Fig. A3b) is the AI. The benefit of using the

ACI instead of the CI is that above about 10 km the ACI is

not getting smaller with decreasing altitude. This allows for a

larger and altitude- and latitude-independent threshold value,

making this index more sensitive towards thin aerosol layers.

Comparing the clear air simulations (Fig. A3) with MI-

PAS measurements (Fig. A4) shows a good agreement of

the shape of the vertical profile but systematically larger val-

ues for the simulated CI and ACI above about 10 km (po-

lar atmosphere: Fig. A4a, tropics: Fig. A4b, c). This differ-

ence is due to the fact that in the clear air simulations no

aerosol is considered, but in the real atmosphere a variable

amount of (background) aerosol is always present and hence

the index values are expected to be smaller. This effect is

more pronounced for the ACI than for the CI, because the

960 cm−1 window used for the ACI is only sensitive to the

target species aerosol, whereas the 832 cm−1 window used

for the CI is in addition slightly affected by the water vapour

continuum and some other trace gases. Below about 10 km in

the tropics the simulations of the CI and ACI show systemati-

cally smaller index values than the measurements (Fig. A4c).
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Figure A1. CI (a), AI (b), and ACI (c) up to 50 km altitude for

MIPAS orbit 49508 measured on 18 August 2011.
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Figure A2. ACI profiles for MIPAS orbit 7661 measured on 18 Au-

gust 2003. The black crossed denote cloudy regions identified by a

fixed CI threshold of 2 below 10 km and by the variable thresholds

above 10 km (Sembhi et al., 2012).

Certainly the climatological data used in the simulations do

not represent the atmospheric state perfectly, but sensitivity

tests showed that the ACI simulations below 7.5 km at high

and midlatitudes and 9.5 km in the tropics are affected by the

water vapour continuum. The water vapour scheme used in

JURASSIC is the MT_CKD scheme (Clough et al., 2005)

that is known to have a limited accuracy at the lowest alti-

tudes (Sect. 3.1). However, for the aerosol detection and ice

filtering method presented here this issue has no further im-

plications, because the simulated clear air spectra with low

ACI values fall in the ice cloud group and hence will also be

filtered out.

Simulated profiles of the CI, AI, and ACI for a 1 km thick

ice cloud, volcanic ash, and sulfate aerosol are presented in

Figs. A5 to A7. For the three particle types the deviation from

the clear air profile is more pronounced for the AI than for the

CI. The CI and AI minimum values due to the cloud layer are

located slightly below cloud altitude. For ice clouds (Fig. A5)

the AI is systematically larger than the CI, whereas for vol-

canic ash (Fig. A6) and sulfate aerosol (Fig. A7) the AI can

be smaller than the CI or both values are similar. This is due

to the spectral slope of the extinction coefficient, where the

extinction at 960 is larger than at 830 for sulfate aerosol and

ash and equal or smaller for ice. The simulations demonstrate

that the AI is highly sensitive not only to ice and aerosol but

to aerosol in particular.

A4 Separation between ice clouds and non-ice PSCs

In Fig. 5d we show an example for PSCs where measure-

ments fall above the separation lines. On that particular day

the polar vortex was shifted towards about 60◦ N over Siberia

(e.g. see MLS data at http://mls.jpl.nasa.gov/) and tempera-

tures were below 196 K and above 188 K so that STS and
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Figure A3. Simulated profiles for clear air in polar winter (dark

blue), summer (light blue), midlatitude (yellow), and equatorial

(red) atmosphere. (a) CI (solid lines) and AI (dashed lines). (b) ACI.

NAT PSCs can exist but not ice. Figure A8a shows the lo-

cation and altitudes of MIPAS particle detections that fall in

the non-ice group. Most of these detections are located in the

polar region. As in Fig. 5d, but for 0–60◦ N, Fig. A8b shows

that the measurements above the separation lines disappear,

except for a few PSC detections south of 60◦ N over Siberia

and some aerosol in the tropics. The fact that the BTD cor-

relation used here for filtering out ice clouds also improves

the discrimination between ice and non-ice PSCs has been

investigated in a separate study by Spang et al. (2016).
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Figure A4. Measured ACI (solid lines) and CI (dashed lines) pro-

files for (a) polar winter 2011 (70–90◦ N, 0–2.5◦ E), (b) tropics

2011 (0–30◦ S, 110–120◦ E), and (c) tropics 2003 (0–20◦ N, 30–

60◦ E). Grey dots indicate clear air spectra and blue dots indicate

spectra affected by ice clouds according to the method presented in

Sect. 3.2.
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Figure A5. Simulated profiles for a 1 km thick ice cloud for three extinctions and the mode radius of 24 µm. Left column: CI (solid lines)

and AI (dashed lines). Right column ACI for cloud (coloured lines) and clear air (black lines). The grey area indicates the cloud layer. The

colours indicate the atmosphere type: blue – polar winter; light blue – polar summer; yellow – midlatitude; red – tropical atmosphere.
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Figure A6. Same as Fig. A5 but for volcanic ash and the mode radius of 0.8 µm.
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Figure A7. Same as Fig. A5 but for sulfate aerosol and the mode radius of 0.6 µm.

Figure A8. Detection of non-ice particles on 29 January 2011. (a) Location and altitudes of the particle detections. (b) Same as Fig. 5d but

for 0–60◦ N.
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