000818220 001__ 818220
000818220 005__ 20210129224118.0
000818220 0247_ $$2doi$$a10.1016/j.neuroimage.2016.06.052
000818220 0247_ $$2WOS$$aWOS:000381583500042
000818220 0247_ $$2altmetric$$aaltmetric:9265656
000818220 0247_ $$2pmid$$apmid:27374370
000818220 037__ $$aFZJ-2016-04705
000818220 082__ $$a610
000818220 1001_ $$0P:(DE-Juel1)164123$$aPopovych, Svitlana$$b0
000818220 245__ $$aMovement-related phase locking in the delta–theta frequency band
000818220 260__ $$aOrlando, Fla.$$bAcademic Press$$c2016
000818220 3367_ $$2DRIVER$$aarticle
000818220 3367_ $$2DataCite$$aOutput Types/Journal article
000818220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1473844640_8532
000818220 3367_ $$2BibTeX$$aARTICLE
000818220 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000818220 3367_ $$00$$2EndNote$$aJournal Article
000818220 520__ $$aMovements result from a complex interplay of multiple brain regions. These regions are assembled into distinct functional networks depending on the specific properties of the action. However, the nature and details of the dynamics of this complex assembly process are unknown. In this study, we sought to identify key markers of the neural processes underlying the preparation and execution of motor actions that always occur irrespective of differences in movement initiation, hence the specific neural processes and functional networks involved. To this end, EEG activity was continuously recorded from 18 right-handed healthy participants while they performed a simple motor task consisting of button presses with the left or right index finger. The movement was performed either in response to a visual cue or at a self-chosen, i.e., non-cued point in time. Despite these substantial differences in movement initiation, dynamic properties of the EEG signals common to both conditions could be identified using time–frequency and phase locking analysis of the EEG data. In both conditions, a significant phase locking effect was observed that started prior to the movement onset in the δ–θ frequency band (2–7 Hz), and that was strongest at the electrodes nearest to the contralateral motor region (M1). This phase locking effect did not have a counterpart in the corresponding power spectra (i.e., amplitudes), or in the event-related potentials. Our finding suggests that phase locking in the δ–θ frequency band is a ubiquitous movement-related signal independent of how the actual movement has been initiated. We therefore suggest that phase-locked neural oscillations in the motor cortex are a prerequisite for the preparation and execution of motor actions
000818220 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000818220 7001_ $$0P:(DE-Juel1)164124$$aRosjat, Nils$$b1
000818220 7001_ $$0P:(DE-HGF)0$$aToth, T. I.$$b2
000818220 7001_ $$0P:(DE-Juel1)161286$$aWang, Bin$$b3
000818220 7001_ $$0P:(DE-Juel1)166123$$aLiu, Liqing$$b4
000818220 7001_ $$0P:(DE-Juel1)162251$$aAbdollahi, Rouhollah$$b5
000818220 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b6
000818220 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b7
000818220 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b8
000818220 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b9$$eCorresponding author
000818220 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2016.06.052$$p439-449$$tNeuroImage$$v139$$x1053-8119$$y2016
000818220 8564_ $$uhttps://juser.fz-juelich.de/record/818220/files/1-s2.0-S1053811916303019-main.pdf$$yRestricted
000818220 8564_ $$uhttps://juser.fz-juelich.de/record/818220/files/1-s2.0-S1053811916303019-main.gif?subformat=icon$$xicon$$yRestricted
000818220 8564_ $$uhttps://juser.fz-juelich.de/record/818220/files/1-s2.0-S1053811916303019-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000818220 8564_ $$uhttps://juser.fz-juelich.de/record/818220/files/1-s2.0-S1053811916303019-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000818220 8564_ $$uhttps://juser.fz-juelich.de/record/818220/files/1-s2.0-S1053811916303019-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000818220 8564_ $$uhttps://juser.fz-juelich.de/record/818220/files/1-s2.0-S1053811916303019-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000818220 909CO $$ooai:juser.fz-juelich.de:818220$$pVDB
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164123$$aForschungszentrum Jülich$$b0$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164124$$aForschungszentrum Jülich$$b1$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161286$$aForschungszentrum Jülich$$b3$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166123$$aForschungszentrum Jülich$$b4$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162251$$aForschungszentrum Jülich$$b5$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b6$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b7$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
000818220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b9$$kFZJ
000818220 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000818220 9141_ $$y2016
000818220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000818220 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000818220 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000818220 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000818220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000818220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000818220 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000818220 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000818220 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000818220 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000818220 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000818220 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000818220 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000818220 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000818220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000818220 920__ $$lyes
000818220 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000818220 980__ $$ajournal
000818220 980__ $$aVDB
000818220 980__ $$aUNRESTRICTED
000818220 980__ $$aI:(DE-Juel1)INM-3-20090406