000818231 001__ 818231
000818231 005__ 20240711092249.0
000818231 0247_ $$2doi$$a10.1016/j.surfcoat.2016.08.074
000818231 0247_ $$2ISSN$$a0257-8972
000818231 0247_ $$2ISSN$$a1879-3347
000818231 0247_ $$2WOS$$aWOS:000390622200051
000818231 037__ $$aFZJ-2016-04714
000818231 082__ $$a620
000818231 1001_ $$0P:(DE-Juel1)156509$$aDashjav, E.$$b0$$eCorresponding author
000818231 245__ $$aAtomic layer deposition and high-resolution electron microscopy characterization of nickel nanoparticles for catalyst applications
000818231 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000818231 3367_ $$2DRIVER$$aarticle
000818231 3367_ $$2DataCite$$aOutput Types/Journal article
000818231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1475668895_14266
000818231 3367_ $$2BibTeX$$aARTICLE
000818231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000818231 3367_ $$00$$2EndNote$$aJournal Article
000818231 520__ $$aNi nanoparticles (diameter < 10 nm) are deposited on Si and ceramic substrates of porous lanthanum-substituted strontium titanate/yttrium-stabilized zirconia (LST/YSZ) composites by a two-step process. First, NiO films are produced by atomic layer deposition at 200 °C using bis(methylcyclopentadienyl)nickel(II) (Ni(MeCp)2) and H2O as precursors. In the second step, the NiO films are reduced in H2 atmosphere at 400–800 °C. The size of the resulting Ni nanoparticles is controlled by the temperature. The largest particles with a diameter of about 7 nm are obtained at 800 °C. NiO film and Ni nanoparticles deposited on Si substrates are characterized by high-resolution electron microscopy. It was found that the Ni(MeCp)2 precursor reacts with the substrate, leading to the formation of NiSi2 precipitates beneath the surface of the Si wafer and amorphization of the surrounding area, resulting in a 10 nm thick top layer of the Si wafer. After reductive annealing, NiSi2 precipitates are preserved but Si recrystallizes and the amorphous NiO film transforms into crystalline Ni nanoparticles well distributed on the wafer surface. Process parameters were optimized for Si substrates and transfer of the process to ceramic LST/YSZ substrates is possible in principle. However, a much higher number of ALD cycles (1200 compared to 100 for Si) are necessary to obtain Ni nanoparticles of similar size and the number density of particles is lower than observed for Si substrates.
000818231 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000818231 588__ $$aDataset connected to CrossRef
000818231 7001_ $$0P:(DE-HGF)0$$aLipińska-Chwałek, M.$$b1
000818231 7001_ $$0P:(DE-Juel1)145209$$aGrüner, D.$$b2
000818231 7001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b3
000818231 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, M.$$b4
000818231 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b5
000818231 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2016.08.074$$gp. S0257897216308398$$p428-435$$tSurface and coatings technology$$v307$$x0257-8972$$y2016
000818231 8564_ $$uhttps://juser.fz-juelich.de/record/818231/files/1-s2.0-S0257897216308398-main.pdf$$yRestricted
000818231 8564_ $$uhttps://juser.fz-juelich.de/record/818231/files/1-s2.0-S0257897216308398-main.gif?subformat=icon$$xicon$$yRestricted
000818231 8564_ $$uhttps://juser.fz-juelich.de/record/818231/files/1-s2.0-S0257897216308398-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000818231 8564_ $$uhttps://juser.fz-juelich.de/record/818231/files/1-s2.0-S0257897216308398-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000818231 8564_ $$uhttps://juser.fz-juelich.de/record/818231/files/1-s2.0-S0257897216308398-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000818231 8564_ $$uhttps://juser.fz-juelich.de/record/818231/files/1-s2.0-S0257897216308398-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000818231 8767_ $$92016-09-16$$d2016-09-16$$eColour charges$$jZahlung erfolgt
000818231 909CO $$ooai:juser.fz-juelich.de:818231$$popenCost$$pOpenAPC$$pVDB
000818231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b0$$kFZJ
000818231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b2$$kFZJ
000818231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b3$$kFZJ
000818231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b4$$kFZJ
000818231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b5$$kFZJ
000818231 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000818231 9141_ $$y2016
000818231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000818231 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000818231 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000818231 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000818231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2015
000818231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000818231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000818231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000818231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000818231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000818231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000818231 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000818231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000818231 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000818231 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000818231 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x2
000818231 980__ $$ajournal
000818231 980__ $$aVDB
000818231 980__ $$aUNRESTRICTED
000818231 980__ $$aI:(DE-Juel1)IEK-1-20101013
000818231 980__ $$aI:(DE-Juel1)IEK-2-20101013
000818231 980__ $$aI:(DE-Juel1)PGI-5-20110106
000818231 980__ $$aAPC
000818231 981__ $$aI:(DE-Juel1)IMD-1-20101013
000818231 981__ $$aI:(DE-Juel1)IMD-2-20101013
000818231 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000818231 981__ $$aI:(DE-Juel1)IEK-2-20101013
000818231 981__ $$aI:(DE-Juel1)PGI-5-20110106