000818246 001__ 818246
000818246 005__ 20220930130104.0
000818246 0247_ $$2doi$$a10.1186/s13628-016-0029-y
000818246 0247_ $$2Handle$$a2128/12532
000818246 0247_ $$2WOS$$aWOS:000374457200001
000818246 0247_ $$2altmetric$$aaltmetric:6849550
000818246 0247_ $$2pmid$$apmid:27103992
000818246 037__ $$aFZJ-2016-04724
000818246 041__ $$aEnglish
000818246 082__ $$a570
000818246 1001_ $$0P:(DE-Juel1)151241$$aKynast, Philipp$$b0
000818246 245__ $$aEvaluation of the coarse-grained OPEP force field for protein-protein docking
000818246 260__ $$aLondon$$bBioMed Central$$c2016
000818246 3367_ $$2DRIVER$$aarticle
000818246 3367_ $$2DataCite$$aOutput Types/Journal article
000818246 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1476706530_20899
000818246 3367_ $$2BibTeX$$aARTICLE
000818246 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000818246 3367_ $$00$$2EndNote$$aJournal Article
000818246 520__ $$aBackground: Knowing the binding site of protein–protein complexes helps understand their function and shows possible regulation sites. The ultimate goal of protein–protein docking is the prediction of the three-dimensional structure of a protein–protein complex. Docking itself only produces plausible candidate structures, which must be ranked using scoring functions to identify the structures that are most likely to occur in nature. Methods: In this work, we rescore rigid body protein–protein predictions using the optimized potential for efficient structure prediction (OPEP), which is a coarse-grained force field. Using a force field based on continuous functions rather than a grid-based scoring function allows the introduction of protein flexibility during the docking procedure. First, we produce protein–protein predictions using ZDOCK, and after energy minimization via OPEP we rank them using an OPEP-based soft rescoring function. We also train the rescoring function for different complex classes and demonstrate its improved performance for an independent dataset. Results: The trained rescoring function produces a better ranking than ZDOCK for more than 50 % of targets, rising to over 70 % when considering only enzyme/inhibitor complexes. Conclusions: This study demonstrates for the first time that energy functions derived from the coarse-grained OPEP force field can be employed to rescore predictions for protein–protein complexes.
000818246 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000818246 588__ $$aDataset connected to CrossRef
000818246 7001_ $$0P:(DE-HGF)0$$aDerreumaux, Philippe$$b1
000818246 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author
000818246 773__ $$0PERI:(DE-600)2600208-5$$a10.1186/s13628-016-0029-y$$gVol. 9, no. 1, p. 4$$n1$$p4$$tBMC Biophysics$$v9$$x2046-1682$$y2016
000818246 8564_ $$uhttps://bmcbiophys.biomedcentral.com/articles/10.1186/s13628-016-0029-y
000818246 8564_ $$uhttps://juser.fz-juelich.de/record/818246/files/art%253A10.1186%252Fs13628-016-0029-y.pdf$$yOpenAccess
000818246 8564_ $$uhttps://juser.fz-juelich.de/record/818246/files/art%253A10.1186%252Fs13628-016-0029-y.gif?subformat=icon$$xicon$$yOpenAccess
000818246 8564_ $$uhttps://juser.fz-juelich.de/record/818246/files/art%253A10.1186%252Fs13628-016-0029-y.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000818246 8564_ $$uhttps://juser.fz-juelich.de/record/818246/files/art%253A10.1186%252Fs13628-016-0029-y.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000818246 8564_ $$uhttps://juser.fz-juelich.de/record/818246/files/art%253A10.1186%252Fs13628-016-0029-y.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000818246 8564_ $$uhttps://juser.fz-juelich.de/record/818246/files/art%253A10.1186%252Fs13628-016-0029-y.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000818246 8767_ $$92016-02-24$$d2016-02-24$$eAPC$$jDeposit$$lDeposit: BMC$$p7823260341978383
000818246 909CO $$ooai:juser.fz-juelich.de:818246$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000818246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
000818246 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000818246 9141_ $$y2016
000818246 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000818246 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000818246 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000818246 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000818246 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC BIOPHYS : 2015
000818246 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000818246 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000818246 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000818246 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000818246 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000818246 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000818246 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000818246 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000818246 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000818246 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000818246 920__ $$lyes
000818246 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000818246 9801_ $$aFullTexts
000818246 980__ $$ajournal
000818246 980__ $$aVDB
000818246 980__ $$aUNRESTRICTED
000818246 980__ $$aI:(DE-Juel1)ICS-6-20110106
000818246 980__ $$aAPC
000818246 981__ $$aI:(DE-Juel1)IBI-7-20200312