000818286 001__ 818286
000818286 005__ 20240712084517.0
000818286 0247_ $$2Handle$$a2128/12388
000818286 0247_ $$2URN$$aurn:nbn:de:0001-2016092811
000818286 0247_ $$2ISSN$$a1866-1793
000818286 020__ $$a978-3-95806-156-9
000818286 037__ $$aFZJ-2016-04760
000818286 041__ $$aEnglish
000818286 1001_ $$0P:(DE-Juel1)145392$$aSommer, Nicolas$$b0$$eCorresponding author$$gmale$$ufzj
000818286 245__ $$aConductivity and Structure of Sputtered ZnO:Al on Flat and Textured Substrates for Thin-Film Solar Cells$$f- 2016-04-22
000818286 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000818286 300__ $$avii, 195, XIV S.
000818286 3367_ $$2DataCite$$aOutput Types/Dissertation
000818286 3367_ $$2ORCID$$aDISSERTATION
000818286 3367_ $$2BibTeX$$aPHDTHESIS
000818286 3367_ $$02$$2EndNote$$aThesis
000818286 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1474959171_17376
000818286 3367_ $$2DRIVER$$adoctoralThesis
000818286 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v328
000818286 502__ $$aRWTH Aachen, Diss., 2016$$bDr.$$cRWTH Aachen$$d2016
000818286 520__ $$aAluminum-doped zinc oxide (ZnO:Al) is a prominent representative of the material class denoted as transparent conductive oxides (TCO). TCOs feature electrical conductivity while being transparent in the visible range. These unique properties constitute the wide application of TCOs in opto-electronic devices. This work targets the application of TCOs for thin-film silicon and chalcopyrite-based solar cells. Generally, TCOs are deposited onto at substrates. However, TCO growth on textured, light scattering substrates for thin-film silicon solar cells and on the rough chalcopyrite absorber also call for the optimization of TCO deposition on textured substrates. Therefore, the deposition of sputtered ZnO:Al on at as well as on textured substrates is elaborated. The focus is the understanding and optimization of electrical conductivity accompanied by a detailed investigation of the material's structural properties. On at substrates, I propose a conductivity model that comprises three scattering mechanisms, namely ionized-impurity, electron-phonon, and grain boundary scattering. The prominent feature of the model is the analytical description of grain boundary scattering by feld emission, i.e. quantum mechanical tunneling of electrons through potential barriers at grain boundaries. For this purpose, a theory of Stratton(R. Stratton, $\textit{Theory of Field Emission from Semiconductors}$, Phys. Rev. $\textbf{125}$ (1962), 67 - 82) is adapted to double Schottky barriers at grain boundaries. The conductivity model is applied to a wide range of literature data to show its applicability and explanatory power. After establishing the basic understanding of ZnO:Al conductivity, two optimization routes are presented. The first route allows for a reduction of deposition temperature by 100 $^{\circ}$C without deteriorating conductivity, transparency, and etching morphology by means of a seed layer concept. Seed and subsequently grown bulk layers were deposited from ZnO:Al$_{2}$O$_{3}$ targets with 2 wt% and 1 wt% Al$_{2}$O$_{3}$, respectively. I investigated the effect of bulk and seed layer deposition temperature as well as seed layer thickness on electrical, optical, and structural properties of ZnO:Al films. The positive effect of the highly doped seed layer was attributed to the beneficial role of the dopant aluminum that induces a surfactant effect. Furthermore, the seed layer induced increase of tensile stress is explained on the basis of the grain boundary relaxation model. Finally, temperature-dependent conductivity measurements, optical fits, and etching characteristics revealed that seed [...]
000818286 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000818286 650_7 $$xDiss.
000818286 8564_ $$uhttps://juser.fz-juelich.de/record/818286/files/Energie_Umwelt_328.pdf$$yOpenAccess
000818286 8564_ $$uhttps://juser.fz-juelich.de/record/818286/files/Energie_Umwelt_328.gif?subformat=icon$$xicon$$yOpenAccess
000818286 8564_ $$uhttps://juser.fz-juelich.de/record/818286/files/Energie_Umwelt_328.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000818286 8564_ $$uhttps://juser.fz-juelich.de/record/818286/files/Energie_Umwelt_328.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000818286 8564_ $$uhttps://juser.fz-juelich.de/record/818286/files/Energie_Umwelt_328.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000818286 8564_ $$uhttps://juser.fz-juelich.de/record/818286/files/Energie_Umwelt_328.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000818286 909CO $$ooai:juser.fz-juelich.de:818286$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000818286 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000818286 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000818286 9141_ $$y2016
000818286 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000818286 920__ $$lyes
000818286 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000818286 9801_ $$aFullTexts
000818286 980__ $$aphd
000818286 980__ $$aVDB
000818286 980__ $$aUNRESTRICTED
000818286 980__ $$aI:(DE-Juel1)IEK-5-20101013
000818286 981__ $$aI:(DE-Juel1)IMD-3-20101013