000818333 001__ 818333
000818333 005__ 20240712101038.0
000818333 0247_ $$2doi$$a10.5194/acp-16-11237-2016
000818333 0247_ $$2ISSN$$a1680-7316
000818333 0247_ $$2ISSN$$a1680-7324
000818333 0247_ $$2Handle$$a2128/12324
000818333 0247_ $$2WOS$$aWOS:000384199500002
000818333 0247_ $$2altmetric$$aaltmetric:11956551
000818333 037__ $$aFZJ-2016-04805
000818333 082__ $$a550
000818333 1001_ $$0P:(DE-HGF)0$$aSarrafzadeh, Mehrnaz$$b0
000818333 245__ $$aImpact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation
000818333 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000818333 3367_ $$2DRIVER$$aarticle
000818333 3367_ $$2DataCite$$aOutput Types/Journal article
000818333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1474374997_342
000818333 3367_ $$2BibTeX$$aARTICLE
000818333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000818333 3367_ $$00$$2EndNote$$aJournal Article
000818333 520__ $$aIn this study, the NOx dependence of secondary organic aerosol (SOA) formation from photooxidation of the biogenic volatile organic compound (BVOC) β-pinene was comprehensively investigated in the Jülich Plant Atmosphere Chamber. Consistent with the results of previous NOx studies we found increases of SOA yields with increasing [NOx] at low-NOx conditions ([NOx]0 < 30 ppb, [BVOC]0 ∕ [NOx]0 > 10 ppbC ppb−1). Furthermore, increasing [NOx] at high-NOx conditions ([NOx]0 > 30 ppb, [BVOC]0 ∕ [NOx]0 ∼ 10 to ∼ 2.6 ppbC ppb−1) suppressed the SOA yield. The increase of SOA yield at low-NOx conditions was attributed to an increase of OH concentration, most probably by OH recycling in NO + HO2 → NO2 + OH reaction. Separate measurements without NOx addition but with different OH primary production rates confirmed the OH dependence of SOA yields. After removing the effect of OH concentration on SOA mass growth by keeping the OH concentration constant, SOA yields only decreased with increasing [NOx]. Measuring the NOx dependence of SOA yields at lower [NO] ∕ [NO2] ratio showed less pronounced increase in both OH concentration and SOA yield. This result was consistent with our assumption of OH recycling by NO and to SOA yields being dependent on OH concentrations. Our results furthermore indicated that NOx dependencies vary for different NOx compositions. A substantial fraction of the NOx-induced decrease of SOA yields at high-NOx conditions was caused by NOx-induced suppression of new particle formation (NPF), which subsequently limits the particle surface where low volatiles condense. This was shown by probing the NOx dependence of SOA formation in the presence of seed particles. After eliminating the effect of NOx-induced suppression of NPF and NOx-induced changes of OH concentrations, the remaining effect of NOx on the SOA yield from β-pinene photooxidation was moderate. Compared to β-pinene, the SOA formation from α-pinene photooxidation was only suppressed by increasing NOx. However, basic mechanisms of the NOx impacts were the same as that of β-pinene.
000818333 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000818333 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000818333 588__ $$aDataset connected to CrossRef
000818333 7001_ $$0P:(DE-Juel1)129421$$aWildt, Jürgen$$b1$$eCorresponding author$$ufzj
000818333 7001_ $$0P:(DE-Juel1)156385$$aPullinen, Iida$$b2$$ufzj
000818333 7001_ $$0P:(DE-Juel1)142073$$aSpringer, Monika$$b3$$ufzj
000818333 7001_ $$0P:(DE-Juel1)129345$$aKleist, Einhard$$b4$$ufzj
000818333 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b5$$ufzj
000818333 7001_ $$0P:(DE-Juel1)161557$$aSchmitt, Sebastian$$b6$$ufzj
000818333 7001_ $$0P:(DE-Juel1)145715$$aWu, Cheng$$b7$$ufzj
000818333 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b8$$ufzj
000818333 7001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b9$$ufzj
000818333 7001_ $$0P:(DE-HGF)0$$aHastie, Donald R.$$b10
000818333 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b11$$ufzj
000818333 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-11237-2016$$gVol. 16, no. 17, p. 11237 - 11248$$n17$$p11237 - 11248$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000818333 8564_ $$uhttps://juser.fz-juelich.de/record/818333/files/acp-16-11237-2016.pdf$$yOpenAccess
000818333 8564_ $$uhttps://juser.fz-juelich.de/record/818333/files/acp-16-11237-2016.gif?subformat=icon$$xicon$$yOpenAccess
000818333 8564_ $$uhttps://juser.fz-juelich.de/record/818333/files/acp-16-11237-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000818333 8564_ $$uhttps://juser.fz-juelich.de/record/818333/files/acp-16-11237-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000818333 8564_ $$uhttps://juser.fz-juelich.de/record/818333/files/acp-16-11237-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000818333 8564_ $$uhttps://juser.fz-juelich.de/record/818333/files/acp-16-11237-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000818333 8767_ $$92016-10-19$$d2016-10-19$$eAPC$$jZahlung erfolgt$$pacp-2016-336
000818333 909CO $$ooai:juser.fz-juelich.de:818333$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich$$b1$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156385$$aForschungszentrum Jülich$$b2$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142073$$aForschungszentrum Jülich$$b3$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich$$b4$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b5$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161557$$aForschungszentrum Jülich$$b6$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145715$$aForschungszentrum Jülich$$b7$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b8$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136801$$aForschungszentrum Jülich$$b9$$kFZJ
000818333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b11$$kFZJ
000818333 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000818333 9141_ $$y2016
000818333 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000818333 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000818333 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000818333 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000818333 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000818333 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000818333 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000818333 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000818333 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000818333 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000818333 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000818333 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000818333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000818333 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000818333 920__ $$lyes
000818333 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000818333 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000818333 9801_ $$aFullTexts
000818333 980__ $$ajournal
000818333 980__ $$aVDB
000818333 980__ $$aUNRESTRICTED
000818333 980__ $$aI:(DE-Juel1)IEK-8-20101013
000818333 980__ $$aI:(DE-Juel1)IBG-2-20101118
000818333 980__ $$aAPC
000818333 981__ $$aI:(DE-Juel1)ICE-3-20101013
000818333 981__ $$aI:(DE-Juel1)IBG-2-20101118