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Abstract 

Counterfactual definiteness must be used as at least one of the postulates or axioms 

that are necessary to derive Bell-type inequalities. It is considered by many to be a 

postulate that not only is commensurate with classical physics (as for example Eins-

tein’s special relativity), but also separates and distinguishes classical physics from 

quantum mechanics. It is the purpose of this paper to show that Bell’s choice of ma-

thematical functions and independent variables implicitly includes counterfactual 

definiteness. However, his particular choice of variables reduces the generality of his 

theory, as well as the physics of all Bell-type theories, so significantly that no mea-

ningful comparison of these theories with actual Einstein-Podolsky-Rosen experi-

ments can be made. 
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1. Introduction 

Bell’s theorem [1] has an unusual standing among mathematical-physical theorems. No 

other theorem has ever been discussed with respect to so many “loopholes”, physical 

situations that make it possible to escape the mathematical strictures of the theorem. It 

is shown that the reason for this fact is that Bell’s theorem is based on the postulate of 

counterfactual definiteness. The postulate of counterfactual definiteness to derive 

Bell-type inequalities is clearly asserted in the books of Peres [2] and Leggett [3]. 

Some of Einstein’s reasoning regarding Einstein-Podolsky-Rosen (EPR) experiments 

also contain counterfactual realism and Einstein’s special relativity is counterfactually 

definite in the mathematical sense presented below. This fact may have contributed to 
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the opinion that counterfactual realism is the major defining trait of “classical” theories. 

It will be shown, however, that great care must be exercised with respect to the choice 

of independent variables in the argument of the functions that are used to formulate a 

counterfactually definite physical theory. It will also be shown that the particular choice 

of variables, used for the derivation of Bell’s inequality and Bell’s theorem, imposes 

significant restrictions to the physical situations that can be described by Bell’s 

functions and excludes dynamic processes of classical physics, no matter whether 

deterministic or stochastic. To show this fact, we first repeat the main features of Bell’s 

functions that describe Einstein-Podolsky-Rosen-Bohm (EPRB) experiments and then 

connect them to a precise definition of counterfactual definiteness. 

2. EPRB Experiments and Bell’s Functions Representing Them 

EPRB experiments have been described extensively in the literature [4] [5] and measure 

the spins of entangled particle pairs at two space-like separated locations. The two 

particles of each pair are emanating from a source and propagate toward the space-like 

separated locations. The properties of these particles are measured by instruments that 

are described by a “setting” such as the direction of a polarizer or magnet which is 

characterized by a unit vector of three dimensional space denoted by j = a, b, c, ∙∙∙. 

Measurements of this type have been performed by a number of researchers and have 

had a checkered history with respect to the results. These, at first, contradicted and then 

confirmed quantum theory [4]. There are still significant deviations from quantum 

theory in current experiments, which are, however, mostly ignored [6]. We proceed 

here by just stipulating that indeed these experiments showed a violation of the, by now, 

famous Bell inequality and describe in the following only Bell’s postulates and 

assumptions, thereby focusing on the simplest case involving only three settings and 

not four, as used in actual experiments, see also [7]. Bell’s postulates and assumptions 

are considered by many researchers to be entirely general and valid for all EPR like 

experiments and Gedanken-experiments as long as they can be described by classical 

physics such as Einstein’s relativity. 

Bell’s classical-physics model for the system of measurement equipment and 

entangled pairs of the EPRB experiments is constructed as follows (see page 8 of [1]). 

He assumed that all experimental results, all data, can be described by using functions 

A that map the independent measurement results onto ±1 which symbolizes the two 

possible outcomes of the spin measurements. The variables in the argument of the 

function always include the settings j = a, b, c, ∙∙∙ and another variable, or set of 

variables, that Bell denoted by λ. Bell then proceeded to present a proof of his now 

celebrated inequality: 

, , , , , , 1,A A A A A Aa b a c b c          (1) 

where  indicates the average over many measurements. The left and right factor of 

each term correspond to the data taken at the two corresponding space like separated 

measurement stations. The events of measurements and corresponding data are linked 
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to clock times of two synchronized laboratory clocks. Therefore, the functions A as well 

as the variables j and λ must, for each of the products, correspond to pairs of clock 

times ,n nt t  where n is the measurement number. These clock times are not explicitly 

included as indexes or variables of Bell’s functions. 

Note that Bell’s original paper (see page 7 of [1]) assigned to λ only properties of the 

entangled pair. It is now generally assumed [8] that λ may stand for a set of arbitrary 

physical variables including space and time coordinates or even Einstein’s space-time st. 

Therefore, λ may also describe some properties of the measurement equipment (in 

addition to the magnet or polarizer orientation j), such as dynamical effects arising 

from many-body interactions of the entangled pair with the constituent particles and 

fields of the measurement equipment. Bell agreed with this assumption in his later 

work [1]. 

It is the purpose of this paper to show that the postulate of counterfactual definiteness 

in conjunction with the use of a setting variable j does not permit the introduction of 

general space and time related variables that describe the said many body dynamics. 

Therefore, Bell’s assumptions are not general enough to describe classical theories of 

EPRB experiments that include dynamic processes involving the measurement equip- 

ment. 

3. Counterfactual Reasoning and EPRB Experiments 

Peres [2] gave the following definition of counterfactual realism, which roughly agrees 

with the definition of Leggett [3]. Peres claims, as does Leggett, not to use traditional 

concepts of mathematics and physics to start with, but only “what could have possibly 

been the results of unperformed experiments” and bases his definition of counterfactual 

realism on the following statement: 

It is possible to imagine hypothetical results for any unperformed test, and to do 

calculations where these unknown results are treated as if they were numbers. 

We agree that it is possible, as a purely intellectual activity, to imagine hypothetical 

results for any unperformed tests. However, without significant additional assumptions, 

it is not possible “to do calculations where these unknown results are treated as if they 

were numbers”. Here we encounter the so often unrecognized gulf between sense im- 

pressions, even just imagined ones, and conceptual frame-works such as the axiomatic 

system of numbers or the probability theory of Kolmogorov. Peres, Leggett and a 

majority of quantum information theorists did not and do not recognize that giant gulf, 

that giant separation, between events of nature, recorded as data, and the axiomatic 

edifices of human thought. 

If Peres wishes to treat hypothetical “results” of unperformed tests as if they were 

numbers, he must be sure that these abstractions at least follow the axioms of numbers. 

There are several steps necessary to connect the “events” of the physical world to 

numbers. Boole derived ultimate alternatives and a Boolean algebra while Kolmo- 

gorov’s axiomatic system introduces an event algebra and probability space. It is true 



K. Hess et al. 

 

1654 

that mathematicians often describe experimental situations or ideas about them by the 

Kolmogorov framework and just postulate that a probability space and σ-algebra exists. 

It is known, however, from the work of Boole [9] and Vorob’ev [10] that a given 

particular set of variables may not be able to describe certain correlations in any given 

set of data. 

In more elementary terms, we have to consider the following facts. If we perform 

“calculations where these unknown results are treated as if they were numbers”, then 

we must use the mathematical concept of functions or something equivalent in order to 

link the imagined but possible tests with numbers. A one to one correspondence of the 

possible tests and the numbers needs to be established and it needs to be shown that no 

logical-mathematical contradictions arise from such procedure. If no such corres- 

pondence exists, then the “purely intellectual activity” is nothing more than child’s play 

and the mathematical abstractions of such activity can certainly not be treated as if they 

were numbers with some relation to physics. 

Take any set of data derived from measurements on spin-1/2 particles with Stern- 

Gerlach magnets, that lists the measured spins as “up” or “down” together with magnet 

settings j = a, b, c, ∙∙∙. Can we replace “up” with +1 and “down” with −1 and expect that 

the so obtained set follows the axioms of integers? The “trespass” to deal with tests as if 

they were numbers has been committed by several textbook authors, in particular by 

Peres [2] and Leggett [3]. This point appears in clear relief, if we write down the data 

according to the way in which they are imagined to be taken in testing e.g. the Bell-type 

inequality. The data are recorded in pairs corresponding to detector-events that are re- 

gistered together with equipment settings and the clock times of synchronized labora- 

tory clocks. Thus we obtain data lists of the kind: 1 1 2 2

1 2 21

, , , , , , ,M M

N M

t t t t t t
D D D D D Dj j j j j j

 

the ,n nj j  representing the randomly chosen setting pair and ,n nt t  denoting the 

times of measurement. Here the D’s are symbols that represent the measured up/down 

spin in the example above but may as well represent the red/green color of a flash of 

light, etc. For numerical processing of this list of symbols, it is expedient to introduce 

new symbols ˆ tD j  taking values +1 and −1 that are in one-to-one correspondence with 

the original symbols t
D j . The number of times that the setting (a, b), (a, c), and (b, c) 

was chosen is denoted by Na,b, Na,c, and Nb,c, respectively. The total number of pairs is 

then M = Na,b + Na,c + Nb,c. One cannot do justice to the number of different data-pairs 

by using models with three pairs of mathematical symbols such as Aa, Ab, Aa, Ac, and Ab, 

Ac as they are used in Bell-type proofs. One runs into problems even if one regards 

these mathematical symbols as “variables” (such as Boolean variables [11]) and not just 

as numbers; the reason being that one cannot cover all the different possible 

correlations of the data by such few variables. If we admit the two values +1 and −1 

for the D̂ ’s at different times of the same experiment, then we obtain Na,b + 1 

different values for the sum of the pair product 
, ,1

ˆ ˆn n

n n

M t t

j jn
D Da b a b . If we have three 

such sums with all independent variables, the number of possibilities is 
3

, , ,
1 1 1 3 1N N N Ma b a c b c  for M sufficiently large. In contrast, we have 

for the Bell type variables Aa, Ab, Aa, Ac, and Ab, Ac only about 
2

3 1M  independent 
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choices of all possible different correlations of possible outcomes of these variables. 

This fact arises from Bell’s description of 3 M different pairs of measurements (6 M 

measurements) by only 3 different variables and represents another typical trespass that 

is explicitly made in both the book of Peres [2] and Leggett [3]: they use a model with a 

severe restriction of choices before any physics is introduced and thus”overburden” 

their variables in a way which cannot do justice to the complexity of the data. In real 

EPRB experiments, one uses four not three different randomly chosen settings [12] [13] 

but the above argument equally holds for this case, with 
3

3 1M  and 
2

3 1M  

being replaced by 
4

4 1M  and 
3

4 1M  for 4 M different pairs (8 M 

measurements), respectively. 

This more subtle problem, a well known problem in the area of computer 

simulations, reveals once more the enormous gulf between data and mathematical 

abstractions that describe the data. In the framework of Boole [11], we need to be sure 

that the data can be described by ultimate alternatives (the Boolean variables) and in 

the framework of Kolmogorov we must be sure to deal with random variables 

(functions on a Kolmogorov probability space). But how can we be sure? As a 

minimum requirement we need to introduce functions, with sufficiently many physical 

variables in their arguments, to enable the description of all the possible correlations 

and to guarantee a one to one correspondence of mathematical abstractions and the 

massive amount of data. 

To describe EPRB experiments in the general way that Bell intended and purported 

to actually have done, we need to introduce functions A with variables additional to j in 

their argument (or indexes, see below). We need to have variables such as tn, sn, stn, ∙∙∙ 

that are taken out of the realm of Einsteinian physics and do indeed guarantee the one 

to one correspondence to the data. For example, we may need to include tn, the time of 

measurement at one location and sn representing any property of the objects emanating 

from the source. It may also be necessary to include a more general four dimensional 

space-time vector stn instead or in addition to the measurement time tn and we include 

it here just for completeness. This way we obtain functions , , , ,n n n nA A t sj st . 

Some may ask whether that is not precisely what Bell used by introducing his λ that, 

as he claimed [1], can stand for any set of variables and, therefore, also for the set 

, , ,n n nt s st . We thus may have , , , , ,n n n n n nA A t s Aj st j . Indeed it is true 

that this is what Bell claimed. However, as we will see below his claim is incorrect, 

because he and followers have postulated complete independence of λ and j and thus 

postulated counterfactual definiteness in conjunction with the setting variable j 

according to the precise definition given in the next section. Einstein locality does not 

require independence of λ of the local setting (see Section 5). 

Note that quantum mechanics does not use any setting-type of variable as 

independent variable in the argument of the wave-function. There, the setting-type 

variables label the operators. A helpful discussion of explicit and implicit assumptions 

of Bell, with emphasis of the mathematical structure and consistency, was given by 

Khrennikov [14]. 
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4. Mathematical Definition of Counterfactual Definiteness and 

Bell’s Inequality 

Counterfactual definiteness requires the following. We must be able to describe a 

measurement or test by using a given set of variables in the argument of the function A, 

and thus for example a setting j = b. Then, we must also be able to reason that we could 

have used instead of setting b the setting c and would have obtained the outcome 

corresponding to the value of A, now calculated with setting c and all other variables in 

its argument unchanged. Although this type of reasoning is not permitted in the courts 

of law, its mathematical restatement looks natural and general enough: 

A counterfactually definite theory is described by a function (or functions) that 

map(s) tests onto numbers. The variables of the function(s) argument(s) must be 

chosen in a one to one correspondence to physical entities that describe the test(s) 

and must be independent variables in the sense that they can be arbitrarily chosen 

from their respective domains. 

This definition means that the outcomes of measurements must be described by 

functions of a set of independent variables. The definition applies, of course, to the 

major theories of classical physics, including Einstein’s special relativity. Counterfactual 

definiteness appears, therefore, as a reasonable and even necessary requirement of 

classical theories. However, most importantly, counterfactual definiteness restricts the 

use of variables to those that can be independently picked from their respective 

domains. However, a magnet- or polarizer-orientation, mathematically represented by 

the variable j, cannot be picked independently of the measurement times, which are 

mathematically represented by tn and registered by the clocks of the measurement 

stations. Once a setting is picked at a certain space-time coordinate, no other setting 

can be linked to that coordinate, because of the relativistic limitations for the 

movement of massive bodies and the fact that Bell’s theory is confined to the realm of 

Einsteinian physics and, therefore, excludes quantum superpositions. Thus any 

measurement is related to spatio-temporal equipment changes and the mathematical 

variables that describe the measurement need to represent the possible physical 

situations. 

Enter probability theory and we certainly cannot use the setting j as a random 

variable and the measurement time t as another independent random variable on the 

same probability space. The reason for this fact is rooted in the above explanation and 

can be further crystallized as follows. It is possible to define the setting j as a random 

variable on one probability space meaning that we may regard j as a function which 

assigns to each elementary event ω of a sample space Ω a so called realization of j e.g. 

1
j b . It is also possible, at least under very general circumstances, to formulate the 

measurement times as another random variable t , where  is an elementary 

event of a second sample space Ω'. Again, given some specific 
1

 we obtain a 

realization e.g. 
1 1

t t . 

However, the formation of a product probability space on which both random 
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variables j and t are defined presents now a problem. That space would necessarily 

contain impossible events (such as different settings for the same measurement times) 

with a non-zero product probability measure assigned to them. These facts can actually 

be formulated as a theorem stating that setting and time variables of EPRB experiments 

cannot be defined on one probability space [15]. 

Thus, the postulate of counterfactual definiteness in conjunction with the use of a 

setting variable restricts the independent variables additional to j in the argument of 

Bell’s functions A to a, physically speaking, narrow subset of variables that we denote 

by NB. This subset permits the physical description of static properties but cannot 

handle dynamic properties expressed by space-time dependencies. 

As a consequence, the choices that can be made for variables in addition to the 

setting variable j in Bell’s theory are extremely limited, particularly if these variables are 

related to space-time (or space and time). This limitation is so severe that it is 

impossible to describe general dynamic processes of classical physics with Bell’s 

independent variables. The way to describe general dynamic processes in Kolmogorov’s 

framework is by using stochastic processes. 

To describe a dynamics of EPRB experiments one needs to use two dimensional 

vector stochastic processes, which involves several subtleties that, if neglected, lead to 

incorrect conclusions. A general vector stochastic process is in essence a vector of 

random variables, such a (A1(tn), A2(tn), A3(tn), ∙∙∙), whose statistical properties change 

in time (we use here discrete time only). A precise mathematical definition can be 

found in Ref. [16], pp. 11-15. In relation to EPRB experiments we thus consider vectors 

such as (A1(tn), A2(tn)). 

A first difficulty that is usually encountered is related to the physics of spin mea- 

surements. According to Bohr, the outcomes of measurements on each separate side of 

the EPRB experiment are spin-up or spin down with equal likelihood, which appears to 

suggest stationarity or time-independence of the random variables A1(tn) and A2(tn). 

Bohr’s postulate, however, does not necessitate a time-independence of the statistical 

correlations between the random variables. This fact has been explained on the basis of 

a mathematical model involving time in Ref. [5] (pp. 55-60) and demonstrated by 

actual EPRB related computer experiments [7]. 

A second difficulty arises from the fact, explained in detail above, that the time and 

setting related variables of EPRB experiments cannot be treated as independent. This 

difficulty can be resolved by use of the following two-dimensional system of functions 

(vector stochastic process) on a probability space : 

, .n

n n

t tnA Aj j
                          (2) 

Settings and times are now included as indexes that are not independent. jn = a, b 

represents the randomly chosen settings at one measurement place and ,nj b c  at the 

second. tn as well as nt  are the respective measurement times. n = 1, 2, 3, ∙∙∙ indicates 

just the number of the experiment. Only one setting can occur at one given time in 

order to avoid physical contradictions and incorrect assignments of probability 
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measures. (Note that a generalization of the time-indexes to space-time stn is straight- 

forward.) 

Bell’s inequality then transforms to: 

3,n k m
t t tt t tn k mA A A A A Aa b a c b c

            (3) 

where the labels n, k, m are the appropriate, all different, experiment numbers for 

which the particular settings have been chosen. Equation (3) puts no restrictions on the 

correlations of EPRB experiments, because the actual experiments may now be 

represented by a countable infinite number of different functions instead of the three or 

four functions used by Bell. 

There do exist theorems that appear to prove the validity of Bell’s inequality for 

stochastic processes (the Martingales discussed in [17] are just special forms of 

stochastic processes). These theorems, however, do not use two-dimensional vector 

stochastic processes as used in Equation (2). They use, instead, counterfactual de- 

finiteness in conjunction with setting variables to arrive at three-, four- or higher 

dimensional stochastic processes (Martingales). Thus these theorems cannot encom- 

pass dynamic measurement processes [18] and time- (space-time-) related variables, 

because they would then imply the existence of events with more than one setting at a 

given measurement time and, therefore, involve impossible events with non-zero 

probability measure. Such theorems apply, therefore, only to the set of variables NB as 

defined above and do not apply to EPRB types of experiments that may involve 

dynamical processes in the measurement equipment. 

It is, therefore, imperative to view EPRB experiments in a different light. A violation 

of Bell-type inequalities need not be seen as crossing the border between the reasoning 

of classical Einstein type of physics and quantum mechanics, but indicating a possible 

dynamics in the interactions of particles and measurement equipment. This possible 

dynamics is what needs to be investigated, particularly as contrasted to the charac- 

terization of the measurement equipment by a completely static symbol [19]. 

5. Einstein Locality and Bell’s Reasoning Revisited 

Up to now, experimentalists have not used Bell’s theorem and its implications to search 

for a many body dynamics of local equipment. Instead, they have attempted to 

“uncover” the instantaneous dynamic influences of remote measurements, the so called 

quantum non-localities. Some consider these non-localities to be the most profound 

development of modern physics [5]. They maintain that the measurement of the 

entangled partner causes instantaneous influences over arbitrary distances. 

This search for influences due to distant events is based on the conviction, dating 

back to Bell’s original paper, that Einstein locality is necessary to derive Bell’s inequality. 

However, this is not the case. Bell’s assumption that λ is independent of the setting 

variable j is already contained in the postulate of counterfactual definiteness. The 

postulate of Einstein locality is not only redundant because of this fact, but does not 

require at all that λ be independent of all settings. Variables dependent on the local 
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setting and describing local many body interactions with the incoming particles are 

entirely permitted and necessary. It is counterfactual definiteness that requires that all 

additional variables represented by λ be independent of the setting variable. But why 

does our classical theory need to involve the setting variable in the way Bell has 

included it? One can use the setting variable as an index together with another index 

related to or representing space-time. These indexes are, of course not independent as 

was pointed out above for stochastic processes. 

From these facts, we can deduce that Einstein locality is not a necessary condition for 

Bell’s derivation, rather the opposite. Its correct implementation prevents the deriva- 

tion of Bell to go forward, as shown in Equation (3). 

6. Conclusion 

The major premise for the derivation of Bell’s inequality is counterfactual definiteness, 

which in connection with Bell’s use of setting variables restricts the domain of the 

variables in the argument of Bell’s functions A to a subset NB of general physical 

independent variables. NB does not encompass the variables that are necessary to 

describe a general dynamics of many body interactions with the measurement equip- 

ment. Using only the independent variables defined by NB, it is impossible to find a 

violation of Bell’s inequality, which therefore represents a demarcation between 

possible and impossible experience [9], not between classical and quantum physics. For 

a wider parameter space that permits the description of dynamic processes and includes 

space-time coordinates, the validity of Bell-type inequalities cannot be and has not been 

derived. This situation is reminiscent of that with the last theorem of Fermat before 

1984. There existed only rather trivial proofs of Fermat’s theorem for subsets of 

conditions, while a general proof was not known until Andrew Wiles supplied it in 

1984. Such more complicated and general proofs of Bell’s theorem have not been 

presented and, in the authors opinion, are not likely to be presented in the future, 

because they would need to remove the use of the setting variable j. 
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