000818393 001__ 818393 000818393 005__ 20240619083526.0 000818393 0247_ $$2Handle$$a2128/12829 000818393 037__ $$aFZJ-2016-04854 000818393 041__ $$aEnglish 000818393 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0$$eCorresponding author$$ufzj 000818393 1112_ $$a4th International Soft Matter Conference$$cGrenoble$$d2016-09-12 - 2016-09-16$$gISMC 2016$$wFrance 000818393 245__ $$aThermophoretic accumulation in hydrothermal pores 000818393 260__ $$c2016 000818393 3367_ $$033$$2EndNote$$aConference Paper 000818393 3367_ $$2BibTeX$$aINPROCEEDINGS 000818393 3367_ $$2DRIVER$$aconferenceObject 000818393 3367_ $$2ORCID$$aCONFERENCE_POSTER 000818393 3367_ $$2DataCite$$aOutput Types/Conference Poster 000818393 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1479278244_29804$$xInvited 000818393 520__ $$aThe thermophoretic properties of aqueous formamide solutions as a function of concentration and temperature are studied by means of Infra-Red Thermal Diffusion Forced Rayleigh Scattering. Comparing the results with empirical concepts to describe the temperature dependence of aqueous solutions [1] and molecular dynamics simulations of formamide water mixtures [2] it becomes apparent that the system only adheres to the empirical equation in a dilute state and deviates when formamide-formamide interactions take place at higher concentrations.Formamide is of special interest in the ‘origin-of-life’ concept as it has been shown that a number of prebiotic molecules such as purine, adenine, cytosine and 4(3H)-pyrimidinone form from formamide under catalytic conditions and at sufficiently high concentrations [3]. For nucleotides and short DNA strands it has been shown with numerical finite-element calculations that a high degree of accumulation in hydrothermal pores occurs [4]. Using our thermophoretic data on the formamide/water system, we show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behaviour of formamide. Starting with a formamide concentration of 10^(-3) wt%, estimated to be typical in shallow lakes on early earth [5], the accumulation-fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of approximately 85 wt% at large aspect ratios. References[1] S. Iacopini, R. Rusconi and R. Piazza, Eur. Phys. J. E, 19, (2006) [2] M. D. Elola and B. M. Ladanyi, J. Chem. Phys., 125, (2006) [3] S. Pino, J.E. Sponer, G. Costanzo, R. Saladino and E. Di Mauro, Life, 5, (2015) [4] P. Baaske, F. M. Weinert, S. Duhr, K. H. Lemke, M. J. Russell and D. Braun, P. Natl. Acad. Sci. USA, 104, (2007)[5] S. Miyakawa, H. J. Cleaves and S. L. Miller, Origins Life Evol. Biosphere, 32, (2002) 000818393 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000818393 7001_ $$0P:(DE-Juel1)144600$$aAfanasenkau, Dzmitry$$b1 000818393 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b2$$ufzj 000818393 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b3$$ufzj 000818393 8564_ $$uhttps://juser.fz-juelich.de/record/818393/files/niether_ismc.pdf$$yOpenAccess 000818393 8564_ $$uhttps://juser.fz-juelich.de/record/818393/files/niether_ismc.gif?subformat=icon$$xicon$$yOpenAccess 000818393 8564_ $$uhttps://juser.fz-juelich.de/record/818393/files/niether_ismc.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000818393 8564_ $$uhttps://juser.fz-juelich.de/record/818393/files/niether_ismc.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000818393 8564_ $$uhttps://juser.fz-juelich.de/record/818393/files/niether_ismc.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000818393 8564_ $$uhttps://juser.fz-juelich.de/record/818393/files/niether_ismc.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000818393 909CO $$ooai:juser.fz-juelich.de:818393$$pdriver$$pVDB$$popen_access$$popenaire 000818393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ 000818393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b2$$kFZJ 000818393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b3$$kFZJ 000818393 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000818393 9141_ $$y2016 000818393 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000818393 920__ $$lyes 000818393 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0 000818393 9801_ $$aFullTexts 000818393 980__ $$aposter 000818393 980__ $$aVDB 000818393 980__ $$aUNRESTRICTED 000818393 980__ $$aI:(DE-Juel1)ICS-3-20110106