000818394 001__ 818394 000818394 005__ 20240619083526.0 000818394 0247_ $$2Handle$$a2128/12830 000818394 037__ $$aFZJ-2016-04855 000818394 041__ $$aEnglish 000818394 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0$$ufzj 000818394 1112_ $$a4th International Soft Matter Conference$$cGrenoble$$d2016-09-12 - 2016-09-16$$gISCM 2016$$wFrance 000818394 245__ $$aHow do hydrogen bonds influence thermophoresis? 000818394 260__ $$c2016 000818394 3367_ $$033$$2EndNote$$aConference Paper 000818394 3367_ $$2DataCite$$aOther 000818394 3367_ $$2BibTeX$$aINPROCEEDINGS 000818394 3367_ $$2DRIVER$$aconferenceObject 000818394 3367_ $$2ORCID$$aLECTURE_SPEECH 000818394 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1479278285_29798$$xAfter Call 000818394 520__ $$aSo far there is only a limited microscopic understanding of thermodiffusion for fluids. Especially inaqueous systems the situation is complicated due to charge effects and strong specific crossinteractions. On the other hand a detailed understanding of aqueous systems would be valuable due toimportant applications in biotechnology, where the response to temperature gradients is successfullyemployed to monitor reaction kinetics of large proteins with small ligand molecules [1]. The strongsensitivity of proteins and other water soluble biomolecules is probably caused by a change in thehydration layer, which is influenced by subtle conformation changes induced by the binding of theligand molecule. One key parameter is the understanding of hydrogen bonds in the thermophoreticprocess [2]. To gain a better understanding of underlying physical process we systematicallyinvestigated various hydrogen bond formers (urea, acetamide, formamide, methylformamide) in waterby a holographic grating method called infrared thermal diffusion forced Rayleigh scattering (IRTDFRS).We elucidate the often found typical temperature dependence of the Soret coefficient ofsolute molecules in water and claim that this simple empirical approach to describe the temperaturedependence breaks down at higher solute concentrations, when interactions between different solutemolecules start to play a role. Additionally the concept also requires a hydrogen bond network withoutmicro-heterogeneities or cage structures. For nucleotides we found a correlation between the partitioncoefficient logP and the measured Soret coefficient [3]. As the logP parameter is one of the propertieswhich is included in the so called Lipinski's rule of five for selecting drug compounds, we check thiscorrelation for a number of simple heterocyclic compounds (pyridine, diazines, triazine). Thesenitrogen heterocycles, especially pyrimidine, are partial structures found in many biologically relevantsubstances such as nucleobases, vitamins, alcaloids and drugs (e.g. barbiturates and antibiotics).[1] M. Jerabek-Willemsen, T. André, W. Wanner et al., J. Mol. Struct., 1077, 101 (2014).[2] K. Maeda, N. Shinyashiki, S. Yagihara et al., J. Chem. Phys., 143, 124504 (2015).[3] Z. Wang, H. Kriegs and S. Wiegand, J. Phys. Chem. B, 116, 7463 (2012). 000818394 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000818394 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b1$$ufzj 000818394 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b2$$eCorresponding author$$ufzj 000818394 8564_ $$uhttps://juser.fz-juelich.de/record/818394/files/Wiegand-talk-ISCM.pdf$$yOpenAccess 000818394 8564_ $$uhttps://juser.fz-juelich.de/record/818394/files/Wiegand-talk-ISCM.gif?subformat=icon$$xicon$$yOpenAccess 000818394 8564_ $$uhttps://juser.fz-juelich.de/record/818394/files/Wiegand-talk-ISCM.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000818394 8564_ $$uhttps://juser.fz-juelich.de/record/818394/files/Wiegand-talk-ISCM.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000818394 8564_ $$uhttps://juser.fz-juelich.de/record/818394/files/Wiegand-talk-ISCM.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000818394 8564_ $$uhttps://juser.fz-juelich.de/record/818394/files/Wiegand-talk-ISCM.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000818394 909CO $$ooai:juser.fz-juelich.de:818394$$pdriver$$pVDB$$popen_access$$popenaire 000818394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ 000818394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b1$$kFZJ 000818394 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b2$$kFZJ 000818394 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000818394 9141_ $$y2016 000818394 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000818394 920__ $$lyes 000818394 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0 000818394 9801_ $$aFullTexts 000818394 980__ $$aconf 000818394 980__ $$aVDB 000818394 980__ $$aUNRESTRICTED 000818394 980__ $$aI:(DE-Juel1)ICS-3-20110106