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1 Introduction

Nowadays computer simulations become increasingly important in science as they can
be applied in cases where an experiment is (still) impossible or too expensive to be per-
formed. Furthermore, if experiments are feasible, experimental outcomes and simulation
results can be compared to help improving the experiment. In addition to that, when
a theoretical calculation becomes too complicated to be solved analytically without too
many assumptions, approximations, and simplifications, the solution can only be obtained
numerically. However, for these kinds of simulations the theory which describes the field
of study has to be well-known.

The connections between theory and experiment are clear: On the one hand, experi-
ments provide data from which a theory can eventually be extracted that describes the
outcomes of the experiments. On the other hand, from the theory predictions can be
made which can be verified or disproved by experiments.

But how can we apply computer simulations if the theory is not yet completely under-
stood or we do not want to rely on the theory for some reason? Basically, there are two
possibilities. First, we can directly try to simulate the outcomes of performed experiments
by applying “rules” which are not based on a theory, but lead to the same outcomes as the
experiments (discrete-event simulation). The second possibility is to generate patterns by
simple programs and look for corresponding results in experiments or resembling patterns
in nature (cellular automata such as Lattice-gas cellular automata [1], Conway’s Game of
life[2], and the like). The links between theory, experiment, and simulation are visualized
and summarized in Fig. 1.1.

In this thesis, we focus on the first of the two methods, the discrete-event simulation.
Although in our case the theory (quantum theory) is well-known and successful, if not
necessarily completely understood (e.g. see the quantum measurement paradox [3]), we
apply the discrete-event simulation method to show that at least some results and effects
of quantum theory such as single-particle interference can also be reproduced without the
need of wave functions and the time-dependent Schrödinger equation. The discrete-event

Simulation

Theory Experiment
provide data for theoretical description

test theoretical predictions

comparison

solve numerically

simulate experiment

deduce models from rules

Figure 1.1: Visualization of the connections between theory, experiment, and simulation.
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1 Introduction

simulation method comes with a particle-only model without the need of particle-wave
duality.

The simulation method applies to the period between a particle’s creation and its
detection. Quantum theory cannot describe what happens to the particle between its
creation and detection. For example, in the case of a Mach-Zehnder interferometer ex-
periment, quantum theory cannot predict with certainty at which detector a particle will
be detected or how it actually travels through the interferometer. Quantum theory can
only probabilistically predict the result at the measurement device, but it cannot describe
how the results come about or interference patterns build themselves up detection event
by detection event. For this reason, quantum theory and the discrete-event simulation
method do not contradict each other.

Although the Copenhagen interpretation has become the most widely accepted inter-
pretation of quantum theory, it does not have to be the only working interpretation to
explain how observations such as single-particle interference can be understood. There
are indeed other interpretations of quantum theory, such as Einstein’s statistical inter-
pretation [4], the Bohmian interpretation [5] [6], the many-worlds interpretation [7], the
spontaneous collapse interpretation [8], and others. To some extent, one has to believe
in one or the other interpretation as there is not yet any satisfactory evidence that one
of the interpretations is to be preferred over the others. The discrete-event simulation
method just provides another description for the development of the outcomes of interfer-
ence experiments. However, this does not mean that the simulation method tries to give
an explanation of nature.

Structure

This thesis is structured as follows: In chapter 2, we discuss the discrete-event simulation
method and the implementation of particles, optical elements, and devices applied in the
simulations that we examine in the following chapters.

In chapter 3, we study a proposal for factoring numbers by using a network of Mach-
Zehnder interferometers. We start with the basic idea and then consider two versions for
the parallelization.

In chapter 4, we discuss briefly the random walk, followed by a study of the quantum
random walk. We examine an experiment analytically and then apply the discrete-event
simulation to see whether the method can be used to reproduce the distribution of the
quantum random walk. Furthermore, we investigate an experiment where the quantum
random walk is used to demonstrate a violation of the Leggett-Garg inequality.

Chapter 5 deals with the topic cryptography. Although we give an overview of the
currently used non-quantum cryptosystems, our focus is on quantum key distribution.
A discussion of the first quantum key distribution protocol is followed by a review of
the current progress, especially regarding the security of (imperfect) implementations.
Finally, we simulate a quantum key distribution experiment by means of the discrete-
event simulation method.

In chapter 6, we first study the Franson-interferometer experiment analytically. Subse-
quently, we apply the discrete-event simulation approach to see whether we can reproduce
the strong correlations observed in the experiment.

Finally, in the last chapter we give a summary of the topics we have covered and
experiments that we have simulated. We also summarize briefly the discussions of and
conclusions from all our obtained results.
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2 Discrete-Event Simulations

Discrete-event simulations of quantum (optics) experiments [9] [10] [11] [12] [13] [14] [15]
[16] are different from conventional simulation methods used for simulations of quantum
phenomena in the sense that the Schrödinger equation does not need to be solved. In fact,
not even a wave equation needs to be solved. Nevertheless, the method is capable of repro-
ducing for example interference patterns observed in an interferometer experiment. The
interference pattern is generated spot-by-spot, i.e., single particles are simulated which
travel through an experimental setup and produce the interference pattern when being
detected. The interference pattern builds up event-by-event without direct communica-
tion between the simulated particles. In fact, there is always only one particle in the
setup, thus the only communication is due to a learning process of (some of) the devices
depending on the internal state of the traveling particles.

This method can reproduce interference results predicted by quantum theory. As
quantum theory gives predictions for averages only and not for single events, it is sufficient
that the learning process of the (polarizing) beam splitters and detectors, which are the
devices present in an interferometer, reproduces the correct frequencies. There is no need
to justify changes in the states of the particles as quantum theory cannot describe what
happens with the particle between preparation and detection.

An additional important fact about the discrete-event simulation method is that it only
makes use of “locally causal, adaptive, classical dynamical systems” [14] and thus satisfies
Einstein’s criteria of realism and causality [9].

2.1 Random Numbers

Random numbers are a convenient, but not essential, ingredient of discrete-event simula-
tions. However, true random numbers, i.e., numbers that originate in random statistical
processes such as coin tosses, noise fluctuations, radioactive decays or the like and that
cannot be predicted by anyone [17] are hard to obtain or take a long time to be generated.
For simulation purposes, numbers that can be generated fast and appear to be random
are usually sufficient. So we can draw on pseudo-random numbers which are generated
deterministically by a pseudo-random number generator (PRNG). These numbers look
random, i.e., the resulting sequence of pseudo-random numbers is indistinguishable from
a true random number sequence for someone who does not know which algorithm has
been used [17]. For this purpose, the algorithm of the PRNG has to fulfill some criteria
such as the period of repetition has to be longer than the sequence of generated numbers.
Depending on the application, some other criteria may also be required [17].

Since the PRNG is deterministic, it generates the same numbers each time it is started.
To avoid that the PRNG generates the same numbers for every run of the program, it
is possible to pass some initialization number, the so-called seed, to the PRNG. For
different seeds, the sets of pseudo-random numbers generated by the PRNG are different.
Nevertheless, using the same seed gives the same pseudo-random numbers which can be
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2 Discrete-Event Simulations

useful, e.g., for debugging. So when we speak about random numbers in the context of
simulations, these are usually pseudo-random numbers. However, note that many PRNGs
that are sufficient for simulation purposes (such as e.g. the Mersenne Twister [18]) are
not sufficient for cryptographic purposes. If pseudo-random numbers instead of true
random numbers are used for cryptographic purposes, they have to be generated from a
cryptographically secure PRNG such as for example the Blum-Blum-Shub generator [19].

2.2 Photons

For discrete-event simulations of (quantum) optics experiments, the simulated particles
are photons which are described by a phase (just as classical light waves) and a polariza-
tion. The information called message and carried by the photon, also called messenger,
can therefore be stored as a two-dimensional complex vector m of norm one

m =

(
sin ξ (cosψ1 + i sinψ1)
cos ξ (cosψ2 + i sinψ2)

)
, (2.1)

where the two components are used to represent the polarization (e.g. vertical and hor-
izontal) and are controlled by the parameters ξ, ψ1, and ψ2 [14]. The phases of the
two polarization directions can be different, so they are stored in the complex numbers
cosψ1 + i sinψ1 and cosψ2 + i sinψ2. Optical elements can change the parameters ξ, ψ1,
and ψ2 and act differently depending on the message m.

Moreover, in the simulation, the path of the photon is always well-defined and can be
stored at arbitrary stages without disturbing the subsequent evolution.

In principle, the phases of the photons change in time just because the photons travel
in space. If the photon’s frequency is given by f , the phase changes in a time period
∆t from ψi to ψi + 2πf∆t. Since only differences in the phases of different photons are
relevant, the change of a phase is not taken into account if it affects all photons in the
same way.

2.3 Sources

We usually consider single-photon sources such that the photons are emitted one by one.
The sources are monochromatic, i.e., the frequencies of all photons leaving the source are
the same.

However, there are cases (see section (5.2.3)) where we consider sources emitting pho-
tons with a frequency f + ν where f is fixed and ν is a Gaussian distributed random
number where σ2 is the variance:

p(ν) =
1√
2πσ

e−ν
2/(2σ2). (2.2)

The source emits always a number of Nν photons with the same ν. Then a new ν is
picked and Nν photons leave the source with the new frequency f + ν and so on. This
method is used when time itself and not only the phase of the photons is required. Due
to the fluctuations in the frequencies, different path lengths for example in an unbalanced
Mach-Zehnder interferometer (which will be introduced in chapter 5) can be considered
in the sense that they do not only produce a phase shift, as they would when using the
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2.4 Phase Shifters and Wave Plates

simple model, but they lead to decoherence which appears in unbalanced Mach-Zehnder
interferometers due to the time delay induced in only one of the interferometer arms.

For the Franson-interferometer experiment (see section 6.2), we use a two-photon
source. This source emits two photons at once flying in opposite directions. The fre-
quencies of the photons are f ±ν such that the sum of them is constantly 2f and ν is dis-
tributed according to Eq. (2.2). In real experiments, usually parametric down-conversion
is used where 2f would then be the frequency of the pump laser. Experiments like this,
where we want to measure correlations, are the only ones where more than one photon,
namely two photons, are in the setup at the same time. Nevertheless, these photons do
neither communicate with each other directly nor through the optical devices as each
travels through its own part of the experimental setup.

2.4 Phase Shifters and Wave Plates

Phase shifters and wave plates affect the message of a photon independently of its infor-
mation carried, and therefore they are quite simple devices. A phase shifter which shifts
the phase of a photon by ϕ, changes the incoming message m to

m′ =

(
sin ξ (cos(ψ1 + ϕ) + i sin(ψ1 + ϕ))
cos ξ (cos(ψ2 + ϕ) + i sin(ψ2 + ϕ))

)
. (2.3)

This can be achieved by multiplying the vector m with cosϕ+ i sinϕ.
The wave plates are a bit more sophisticated as they also change the polarization

included in the message. The action of the half-wave plate on the photon can be realized
by multiplying the vector m with the matrix [14]

THWP(ϑ) = −i
(

cos 2ϑ sin 2ϑ
sin 2ϑ − cos 2ϑ

)
, (2.4)

where ϑ indicates the orientation of the optical axis. Considering the polarization states
|V 〉 (vertical polarization) and |H〉 (horizontal polarization), we get for ϑ = π/8 the
map |V 〉 7→ −i(|V 〉 + |H〉)/

√
2, |H〉 7→ −i(|V 〉 − |H〉)/

√
2 which is proportional to the

Hadamard-transformation on the polarization. In order to apply a Hadamard transfor-
mation, which is effectively a rotation of the polarization by π/4, we apply THWP(π/8) to
the message followed by a phase shift by π/2, i.e., a multiplication with i. In total, the
applied transformation is given by

H = i · THWP

(π
8

)
=

1√
2

(
1 1
1 −1

)
. (2.5)

The flight through a quarter-wave plate can also be modeled by a matrix-vector mul-
tiplication with the matrix [14]

TQWP(ϑ) =
1√
2

(
1− i cos 2ϑ −i sin 2ϑ
−i sin 2ϑ 1 + i cos 2ϑ

)
, (2.6)

where ϑ again gives the orientation of the optical axis.
The implementation of these three devices in the discrete-event simulation is simply

done by multiplying the message m by cosϕ+ i sinϕ to achieve a phase shift by ϕ, or by
multiplying the matrices THWP or TQWP with the vector m to apply a wave plate.
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2 Discrete-Event Simulations

2.5 Beam Splitters

Now we investigate the functionality of a beam splitter. From quantum optics (see for
example Ref. [20]) we know that a beam splitter acts on two incoming modes, say a and
a′, such that the output modes b and b′ are given by

(
b
b′

)
=

1√
2

(
1 i
i 1

)(
a
a′

)
=

1√
2

(
a+ ia′

ia+ a′

)
. (2.7)

If we additionally have vertical and horizontal polarization in each mode (a = (av, ah)
T ),

the transformation-matrix is given by

TBS =
1√
2




1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1


 , (2.8)

if the two incoming modes are put into a vector as follows:



av
a′v
ah
a′h


 .

A sketch showing where each of the modes enters or leaves the beam splitter is depicted in
Fig. 2.1. The matrix of the beam splitter acts actually on the horizontally and vertically
polarized parts independently as horizontally and vertically polarized photons do not
interfere because of being distinguishable by their different polarizations.

v
a +a

h

+a’
h

a’
v

+b’
h

b’
v

+b
h

b
v

Figure 2.1: Sketch of a beam splitter. The white square with the diagonal line depicts the
beam splitter, gray arrows visualize incoming and outgoing modes. Incoming modes are
denoted by ai and a′i where i = v, h, and bi and b′i indicate outgoing modes.

However, for the discrete-event simulation this transformation-matrix is not sufficient
as there is only one photon at a time allowed to be in the experimental setup. Therefore,
the photon has to be in either mode a or a′ before it enters the beam splitter, but it
also has to be in either mode b or b′ after it leaves the beam splitter. For this purpose,
a mechanism that decides in which mode the photon leaves the beam splitter when it
enters in mode a or a′ is needed. We use the stochastic learning machine (which is also
described in Refs. [9] [14] [16]) which “remembers” the messages carried by the photons
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2.5 Beam Splitters

entering in the two modes. The probability at which port the actual photon leaves the
beam splitter, and which message it carries, depends partly on the messages and input
ports of the previous photons and the current photon. After a sufficient number of photons
has passed through the beam splitter, this probability converges to the probability also
expected for the interference pattern if photons enter at both input ports, for example at
the second beam splitter of a Mach-Zehner interferometer.

How does this machine work in detail? The beam splitter can store two complex unit
vectors Y0 and Y1 of dimension two, and two real valued numbers x0 and x1 which fulfill
x0, x1 ≥ 0 and x0 + x1 = 1. All of these numbers are initialized randomly. The vector Y0

or Y1 is updated when a photon enters through port 0 or 1, respectively. If the photon
enters port i, Yi is then set to the message carried by this photon. x0 and x1 are updated
via the rule

xi ← γxi + (1− γ) (2.9)
xj ← γxj, (2.10)

where i is the port the photon enters, j is the other one, and γ ∈ [0, 1) is a parameter to
control the “learning process” and which we usually choose to be γ = 0.98. In chapter 6,
we use γ = 0.6 (Ref. [9] includes discussions with different γ). This rule leads to x0 and
x1 containing the frequency at which the photons arrive at the two ports after sufficiently
many have passed the beam splitter.

The numbers x0 and x1 are used to adjust the stored messages according to their
frequencies as follows:




Y ′0,v
Y ′1,v
Y ′0,h
Y ′1,h


 =




√
x0 0 0 0
0
√
x1 0 0

0 0
√
x0 0

0 0 0
√
x1







Y0,v

Y1,v

Y0,h

Y1,h


 , (2.11)

where Yi,v (Yi,h) denotes the vertical (horizontal) component of the message last registered
at port i. Y′i are temporary vectors containing the modified messages. This modification
leads then to the correct weighting of the messages. The reason for this is that the
messages are always normalized, but for the beam splitter, the superposition has to be
normalized with in general two different weights for the summands. So if the particles
enter for example only at port i, the random initialization of the other vector is not
relevant since xi converges to one, and the other one to zero. After the modification of
the vectors Y0 and Y1, the actual beam splitter transformation is applied, and we obtain




W0,v

W1,v

W0,h

W1,h


 := TBS




Y ′0,v
Y ′1,v
Y ′0,h
Y ′1,h


 . (2.12)

We have |W0,v|2 + |W0,h|2 + |W1,v|2 + |W1,h|2 = 1 since |Y ′0,v|2 + |Y ′1,v|2 + |Y ′0,h|2 + |Y ′1,h|2 = 1
and TBS is unitary. A (pseudo) random number r ∈ [0, 1] is then used to decide through
which port the photon leaves the beam splitter. This decision depends on w0 := |W0,v|2 +
|W0,h|2 ∈ [0, 1] in the following way: If r < w0, the photon leaves through port 0, and if
r ≥ w0, the photon leaves through port 1. The message the photon carries when it leaves

7



2 Discrete-Event Simulations

the beam splitter at port i is set to

m′ =
1√

|Wi,v|2 + |Wi,h|2

(
Wi,v

Wi,h

)
. (2.13)

The message m′ is again normalized such that the photon carries in the end a message
with norm one.

The result is the same when using a dielectric plate to model the beam splitter instead
of directly using the transformation matrix TBS [13].

In the case of incoherent light, for example in the case of a source with fluctuating
frequency, there is no interference in the beam splitter. Then we can replace the beam
splitter with learning machine by a simple comparison of a uniformly distributed random
number r ∈ [0, 1] with 0.5. If r > 0.5, the output port is 0, otherwise it is 1. If the
photon was reflected, i.e., if the number of the input port does not equal the number of
the output port, a phase shift of π/2 is applied.

2.5.1 Polarizing Beam Splitters

For simulating the polarizing beam splitter, we employ the stochastic learning machine
which we also used to achieve the expected behavior of the common beam splitter. Thus,
the polarizing beam splitter also has two complex, two-dimensional vectors Y0 and Y1,
two real-valued positive numbers x0 and x1 which sum up to one, and the fixed learning
parameter γ that is usually set to γ = 0.98. The update rules for the xi and Yi, i ∈ {0, 1},
are the same as before: Depending on the input port, x0 and x1 are updated according
to Eqs. (2.9) and (2.10) where i is the port on which the message arrives and j is the
other one. The vectors Y0 and Y1 are updated according to Eq. (2.11). The only change
is that instead of TBS, we use the transformation-matrix of the polarizing beam splitter
given by [14]

TPBS =




1 0 0 0
0 1 0 0
0 0 0 i
0 0 i 0


 , (2.14)

to compute the temporal vectors W0 and W1 as given in Eq. (2.13). Which output port
is chosen and which message leaves the polarizing beam splitter is determined in the same
way as for the common beam splitter by comparison of the norm of W0 with a random
number.

Using this kind of transformation for the polarizing beam splitter, vertically polarized
photons will be transmitted and horizontally polarized photons will be reflected in a
statistical manner. Since quantum theory gives only information about averages, it is
sufficient that the stochastic learning machine just reproduces the frequencies expected
from quantum theory and does not necessarily transmit or reflect each single photon
according to its polarization.

2.6 Detectors

We consider two different kinds of detectors from which we choose one kind depending
on the experiment. The simple detector only counts arriving photons, so an integer as a

8



2.6 Detectors

counter is already sufficient. For more than only one detector, an array with an entry for
each detector is convenient.

This simple version, however, does not work for all experiments. So sometimes we
have to use a more sophisticated approach which would always work but often makes
things more complex than necessary. For this more sophisticated detector, we also use a
learning machine. This type of detector is also used in Refs. [12] and [15]. The detector
can store two complex numbers Yv and Yh which are initialized at random and then
updated according to the rule

Yi ← γYi + (1− γ)mi (2.15)

for each incoming message m = (mv,mh)
T and i ∈ {v, h}. The detector only clicks if

uniformly distributed random numbers r1, r2 ∈ [0, 1] generated anew for each event fulfill
r1 < |Yv|2 + |Yh|2 and r2 < η, where η is the desired detection efficiency of the detector.
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3 Factoring With Mach-Zehnder
Interferometers

Shor’s algorithm for factoring numbers on a quantum computer achieves an exponential
speedup compared to factoring on a classical computer such that the factoring problem
could in principle be solved in polynomial time [21]. Summhammer proposed a factoring
algorithm which makes use only of Mach-Zehnder interferometers and photodetectors
[22]. Although the speedup is not exponential for this algorithm, it has the advantage
that instead of a quantum computer only a network of Mach-Zehnder interferometers is
needed.

In this chapter, we will investigate this proposal and apply the discrete-event simulation
to the setup of Mach-Zehnder interferometers in order to first get used to the discrete-
event simulation as here we only need phase shifters and beam splitters, and second, to
see whether this implementation might be a step towards an efficient way of factoring
large numbers.

3.1 Investigation of the Basic Idea

First, we have a look at the basic idea of Summhammer’s proposal [22]. The setup is shown
in Fig. 3.1. Basically, the setup consists of Mach-Zehnder interferometers placed one after
another. As in the proposal [22], we examine up to three successive interferometers.

The main idea is that simultaneously increasing the phase differences in the Mach-
Zehnder interferometers in discrete steps and summing up the intensities at the detectors
leads to different intensity patterns depending on the step width. A clever choice of the
step width can be used to determine factors of an integer N . If the phase χi of the phase
shifter contained in the i-th Mach-Zehnder interferometer is increased in steps of 2π/ni,
where ni < nj for 1 ≤ i < j ≤ 7 and ni ∈ N, then the ni can be tested for being factors
of N . For that, the intensities at the detectors have to be registered every N increments
only. After l increases we have χi(l) = 2πl/ni for all i, but we are only interested in the
intensities after l = N, 2N, 3N, . . . , n7N increments. So the idea of the proposal is that
if some of the ni are factors of N , which is to be factorized, it is possible to determine
which ones of the ni are factors by measuring the intensity pattern at the detectors.

We first have a look at one interferometer only (Fig. 3.2) with ideal detectors (i.e. the
detection efficiency is 100%). The probability that a photon is detected at the upper
detector, which we labeled by A, is

pA(χ(l)) =
1

2
(1 + cosχ(l)) . (3.1)

For l = kN , we find for the probability

pA(χ(kN)) =
1

2

(
1 + cos

(
2πkN

n

))
, (3.2)
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Figure 3.1: Setup of Mach-Zehnder interferometers for the factoring algorithm proposed
in Ref. [22] by Summhammer. White boxes with a diagonal line represent 50:50 beam
splitters, cyan ellipses denote phase shifters where ni with i = 1, . . . , 7 indicate that the
phase shifter can be incremented in steps of 2π/ni. Pink half-circles with a wiggly line
denote detectors labeled by A, B, . . . , H.

B

A

n

Figure 3.2: A single Mach-Zehnder interferometer as part of the setup given in Fig. 3.1
with the same meanings of the symbols.

which is 1 if n is a factor of N . Adding up the probabilities to measure photons at detector
A for k = 1, . . . , n we obtain the intensity

I =
n∑

k=1

pA(χ(kN)) =
n

2
+

1

2

n∑

k=1

cos

(
2πkN

n

)
. (3.3)

If n is a factor of N , I = n and otherwise I ≈ n/2 because the summation over k of
cos (2πkN/n) averages approximately to zero as stated in [22].

Taking into account the interferometers 1, 2, and 4 as labeled in Fig. 3.3, we have
to sum from k = 1 to k = n4 as n4 is the largest denominator occurring in one of the
cosines. To obtain the intensity at detector A we have to multiply the probabilities that
the photons leave the interferometers in the upper direction, and perform the sum over k
[22]:

IA =
1

8

n4∑

k=1

(
1+cos

(
2πkN

n1

))(
1+cos

(
2πkN

n2

))(
1+cos

(
2πkN

n4

))
. (3.4)
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3.1 Investigation of the Basic Idea

The intensities at the other detectors result from multiplying the probabilities of the
outputs directing to the corresponding detectors:

IB =
1

8

n4∑

k=1

(
1+cos

(
2πkN

n1

))(
1+cos

(
2πkN

n2

))(
1−cos

(
2πkN

n4

))
(3.5)

IC+D =
1

8

n4∑

k=1

(
1+cos

(
2πkN

n1

))(
1−cos

(
2πkN

n2

))
(3.6)

IE+F+G+H =
1

8

n4∑

k=1

(
1−cos

(
2πkN

n1

))
. (3.7)

Since we register the intensities only every N increments, we can enlarge the increments
by a factor of N which speeds up the computation.

In the simulation, for each increment we generate L = 10 000 messengers with random
polarization and initial phase. The messengers then pass a Mach-Zehnder interferometer
and depending on the output direction, they are detected or sent to the next Mach-Zehnder
interferometer as depicted in Fig. 3.3. A Mach-Zehnder interferometer is composed of two
beam splitters where in between a phase shifter is inserted in one of the arms as repre-
sented in Fig. 3.2. The phase shifters and beam splitters are implemented as described in
section 2.4 and 2.5, respectively. After maximally three Mach-Zehnder interferometers,
the messengers are detected which means they simply lead to an increment of the counter
of the corresponding detector. The normalized intensities are obtained by dividing these
counters by Ln4.

The expected intensities at the detectors A to H, using the argumentation presented in
Ref. [22], are given in Table 3.1 for different combinations of n1, n2, and n4 being factors
of N . All possible outcomes are unique such that the factors can be extracted unam-
biguously. The numerical evaluation of the sums occurring in the analytical expressions
of the intensities are shown in Table 3.2 together with the results of the discrete-event
simulation for various N , n1, n2, and n4.

Table 3.1: Expected intensities at the detectors A to H depending on whether n1, n2,
and n4 are factors or nonfactors of N . “F” indicates a factor of N and “−” indicates a
nonfactor. To allow for direct comparison with Table 3.2, the intensities are divided by
n4 such that they are normalized and sum up to 1. This table is also given in Ref. [22].

n1 n2 n4 IA IB IC+D IE+F+G+H

F F F 1 0 0 0
F F − 0.5 0.5 0 0
F − F 0.5 0 0.5 0
F − − 0.25 0.25 0.5 0
− F F 0.5 0 0 0.5
− F − 0.25 0.25 0 0.5
− − F 0.25 0 0.25 0.5
− − − 0.125 0.125 0.25 0.5

13



3 Factoring With Mach-Zehnder Interferometers

n
1

n
2

n
4

B

A

C+D

E+F+G+H

Figure 3.3: Upper part of the setup shown in Fig. 3.1 as it is used in the first part of the
simulation. The symbols have the same meaning as in Fig. 3.1. The detector labels C+D
and E + F + G + H indicate which detectors are consolidated and replaced by only one
detector.

Table 3.2: Normalized intensities measured in the discrete-event simulation and Eqs. (3.4)
- (3.7) numerically evaluated for various N , n1, n2, and n4, rounded to four decimals. Red
numbers are factors of N .

Simulation Numerical Summation
N n1 n2 n4 IA IB IC+D IE+F+G+H IA IB IC+D IE+F+G+H

30 2 3 5 0.989 0.003 0.003 0.004 1 0 0 0
385 5 7 11 0.991 0.003 0.003 0.003 1 0 0 0
1001 7 11 13 0.991 0.003 0.003 0.003 1 0 0 0
23161 19 23 53 0.992 0.003 0.003 0.003 1 0 0 0
6 2 3 5 0.494 0.499 0.003 0.004 0.5 0.5 0 0
35 5 7 11 0.495 0.499 0.003 0.003 0.5 0.5 0 0
77 7 11 13 0.496 0.498 0.003 0.003 0.5 0.5 0 0

23161 19 23 29 0.498 0.497 0.003 0.003 0.5 0.5 0 0
10 2 3 5 0.394 0.002 0.600 0.004 0.4 0 0.6 0
55 5 7 11 0.433 0.002 0.562 0.003 0.436 0 0.564 0
91 7 11 13 0.455 0.002 0.540 0.003 0.458 0 0.542 0

23161 19 29 53 0.493 0.002 0.502 0.003 0.497 0 0.503 0
14 2 3 5 0.137 0.262 0.598 0.004 0.139 0.261 0.6 0
25 5 7 11 0.214 0.252 0.531 0.003 0.213 0.254 0.533 0
49 7 11 13 0.243 0.249 0.504 0.003 0.245 0.251 0.505 0

23161 19 29 47 0.249 0.248 0.501 0.003 0.250 0.249 0.501 0
15 2 3 5 0.397 0.002 0.003 0.598 0.4 0 0 0.6
77 5 7 11 0.459 0.002 0.002 0.537 0.463 0 0 0.537
143 7 11 13 0.458 0.002 0.002 0.539 0.462 0 0 0.534
23161 17 19 53 0.493 0.002 0.002 0.504 0.496 0 0 0.504
21 2 3 5 0.151 0.248 0.003 0.598 0.15 0.25 0 0.6
49 5 7 11 0.240 0.273 0.002 0.486 0.241 0.273 0 0.486
121 7 11 13 0.287 0.174 0.002 0.537 0.288 0.173 0 0.538
23161 17 23 47 0.242 0.249 0.002 0.507 0.243 0.250 0 0.507
35 2 3 5 0.098 0.001 0.303 0.598 0.1 0 0.3 0.6
121 5 7 11 0.243 0.001 0.270 0.485 0.244 0 0.270 0.486
169 7 11 13 0.199 0.001 0.260 0.539 0.201 0 0.261 0.538
23161 17 29 53 0.241 0.001 0.254 0.504 0.242 0 0.254 0.504
49 2 3 5 0.037 0.064 0.301 0.598 0.038 0.063 0.3 0.6
169 5 7 11 0.091 0.094 0.331 0.485 0.090 0.095 0.329 0.486
529 7 11 13 0.109 0.136 0.217 0.538 0.108 0.136 0.218 0.538
23161 17 31 47 0.119 0.126 0.247 0.507 0.119 0.126 0.247 0.507
190748 53 59 61 0.325 0.080 0.148 0.446 0.327 0.079 0.148 0.446
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3.2 A Simple Extension

The results of the simulation fit nicely with the numerical evaluation of the summations.
However, they do not always coincide with the expectations given in Ref. [22] and Table
3.1. Some results, for example these where n1 and n2 are factors of N , fit well. But
especially the results for small ni, where n1 or n2 is not a factor of N , deviate quite a lot
from the expectations given in Table 3.1. But also results for larger ni can be worse than
for smaller ones (see last two rows of Table 3.2).

The deviations of the exact numerical evaluations of the sums from the results given
in Ref. [22] and Table 3.1 show that the evaluations of the sums given in Eqs. (3.4) -
(3.7) have to be done more carefully than in Ref. [22]. The deviations occur because the
approximation

ni∑

k=1

cos

(
2πkN

nj

)
≈ 0, nj - N, (3.8)

is not necessarily valid if ni 6= nj. So depending on N , ni and nj, this approximation
can work but it may also lead to significant errors. Nevertheless, this setup is usually
capable of indicating factors of N as Table 3.1 provides clear relations such that often
even more severe deviations still lead to distinct assignments. However, unclear intensity
patterns due to deviations that are too large can possibly lead to wrong identifications
of factors. For example for N = 190748 in Table 3.2, the intensity pattern suggests that
n4 is a factor, but it is not. Only in comparison to the other results, we can see that
when we expect zero intensity, the intensity is in all simulations and evaluations close to
zero (≤ 0.004). An intensity of about 0.08 has to correspond to an expected intensity
greater than zero. Taking this into account, we find that the best fitting intensity pattern
corresponds to the case where none of the ni, i = 1, 2, 4, is a factor of N , which is the
correct case. Analyzing the results carefully, the correct pattern can be identified in all
tested cases.

3.2 A Simple Extension

As the aim is a parallel test for factors of N , it is reasonable to also consider the intensities
at the detectors C to H separately and thus take into account the interferometers 3, 5,
6, and 7 from Fig. 3.1. So it is possible to test all the numbers n1 through n7 for being
factors of N . However, if one or more of these numbers are factors of N we may not be
able to say whether we found all the factors, but at least one of them. If n1, n2 or n3 is
a factor of N , we are not able to say whether they are the only factors as some detectors
will not detect any photons at all. For example if n2 is a factor, we cannot say anything
about n5 since there will be no photons flying through the fifth interferometer.

The intensities at detectors A and B are the same as those already given in Eqs. (3.4)
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3 Factoring With Mach-Zehnder Interferometers

and (3.5). At the other detectors, the intensities are given by

IC =
1

8

n7∑

k=1

(
1+cos

(
2πkN

n1

))(
1−cos

(
2πkN

n2

))(
1−cos

(
2πkN

n5

))
(3.9)

ID =
1

8

n7∑

k=1

(
1+cos

(
2πkN

n1

))(
1−cos

(
2πkN

n2

))(
1+cos

(
2πkN

n5

))
(3.10)

IE =
1

8

n7∑

k=1

(
1−cos

(
2πkN

n1

))(
1−cos

(
2πkN

n3

))(
1+cos

(
2πkN

n6

))
(3.11)

IF =
1

8

n7∑

k=1

(
1−cos

(
2πkN

n1

))(
1−cos

(
2πkN

n3

))(
1−cos

(
2πkN

n6

))
(3.12)

IG =
1

8

n7∑

k=1

(
1−cos

(
2πkN

n1

))(
1+cos

(
2πkN

n3

))(
1−cos

(
2πkN

n7

))
(3.13)

IH =
1

8

n7∑

k=1

(
1−cos

(
2πkN

n1

))(
1+cos

(
2πkN

n3

))(
1+cos

(
2πkN

n7

))
. (3.14)

As in the previous case, it is sufficient to increment the phases χi by 2πN/ni and thus
speed up the computation. Therefore, in the simulation we consider χi = 2πkN/ni for
k = 1, 2, . . . , n7 only. Again we generate L = 10 000 messengers for each increment with
random initial phase and polarization. But in this version, each messenger passes through
three Mach-Zehnder interferometers as depicted in Fig. 3.1. In the end, each messenger
contributes to one of the eight counters corresponding to the detectors as we simulate
ideal photodetectors. Dividing the counters by Ln7 normalizes the intensities such they
sum up to one.

The simulation results are given in Table 3.3 together with the numerical evaluations
of the sums for the intensities. The results for N = 115 and N = 325 illustrate the before
mentioned example, as n2 is in both cases a factor but for N = 325, n5 is also a factor. Yet
still we get similar intensity patterns for both numbers. The expected intensities based
on the approximation given in Eq. (3.8) are presented in Table 3.4. As before, these
expected intensities are not achieved perfectly due to the approximation (3.8). However
in this way, the intensity patterns given in Table 3.4 do not depend on the numbers ni,
i = 1, 2, . . . , 7 and N , but they are good enough to compare with and identify at least
one factor of N from the results presented in Table 3.3.

Thus, the simple extension is capable of finding at least one factor of N if at least
one factor is contained within the ni. However, there may be factors a single run cannot
detect. So probably more than one run with different ni is necessary to find all the factors
of N . However, the nice feature of this procedure is that we only need n7 increments
simultaneously of all phases χi, i = 1, 2, . . . , 7. Although approximations have been made,
it is still possible to identify the correct intensity pattern and thus the corresponding
factors.

In the next section, we will examine the more complex proposal for parallelization
mentioned by Summhammer in Ref. [22].

16



3.2 A Simple Extension

Table 3.3: Simulation results of the simple implementation which possibly fails to find all
factors. Given are N , ni, i = 1, 2, . . . , 7 and the intensities at the detectors A, B, . . .H
achieved from the simulation (upper row) and from the numerical evaluation of the sums
(lower row). The red numbers are factors of N . The results of the simulation and the
numerical evaluation coincide well. The intensities are similar for N = 115 and N = 325
although for N = 115, n5 is not a factor but for N = 325 it is.
N n1 n2 n3 n4 n5 n6 n7 IA IB IC ID IE IF IG IH

529 3 5 7 11 13 17 19 0.082 0.139 0.137 0.129 0.135 0.104 0.135 0.139
0.082 0.139 0.137 0.129 0.135 0.104 0.133 0.141

217 7 11 13 17 19 23 29 0.247 0.247 0.253 0.251 0.001 0.001 0.001 0.001
0.247 0.247 0.255 0.251 0 0 0 0

345 3 5 7 11 13 17 19 0.491 0.503 0.001 0.001 0.001 0.001 0.001 0.001
0.495 0.505 0 0 0 0 0 0

693 3 5 7 11 13 17 19 0.471 0.002 0.248 0.276 0.001 0.001 0.001 0.001
0474 0 0.248 0.278 0 0 0 0

115 3 5 7 11 13 17 19 0.234 0.251 0.001 0.001 0.153 0.086 0.123 0.151
0.236 0.251 0 0 0.153 0.086 0.123 0.152

325 3 5 7 11 13 17 19 0.234 0.251 0.001 0.001 0.135 0.105 0.153 0.120
0.236 0.251 0 0 0.135 0.104 0.153 0.121

169 7 11 13 17 19 23 29 0.101 0.141 0.121 0.147 0.001 0.001 0.226 0.262
0.100 0.141 0.122 0.148 0 0 0.226 0.263

299 7 11 13 17 19 23 29 0.109 0.137 0.141 0.108 0.001 0.001 0.219 0.284
0.109 0.137 0.142 0.108 0 0 0.219 0.285

377 7 11 13 17 19 23 29 0.119 0.126 0.124 0.140 0.001 0.001 0.001 0.487
0.119 0.126 0.124 0.141 0 0 0 0.489

323 7 11 13 17 19 23 29 0.241 0.001 0.001 0.267 0.162 0.137 0.143 0.047
0.241 0 0 0.270 0.162 0.138 0.144 0.046
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3 Factoring With Mach-Zehnder Interferometers

Table 3.4: Relations between the ni, i = 1, 2, . . . , 7, being factors (“F”) or nonfactors (“−”)
and the corresponding expected intensities in the detectors A, ..., H. A questionmark (“?”)
denotes that the respective ni does not affect the intensities, i.e., one cannot tell from
the measured intensities whether ni is a factor of N or whether it is not. Although this
procedure does not give enough information to find all possible factors, it can still be used
to identify some factors of N .
n1 n2 n3 n4 n5 n6 n7 IA IB IC ID IE IF IG IH
- - - - - - - 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
- - - - F - - 0.125 0.125 0 0.25 0.125 0.125 0.125 0.125
- - F - - ? - 0.125 0.125 0.125 0.125 0 0 0.25 0.25
- - - - - - F 0.125 0.125 0.125 0.125 0.125 0.125 0 0.25
- - - - - F - 0.125 0.125 0.125 0.125 0.25 0 0.125 0.125
- - - F - - - 0.25 0 0.125 0.125 0.125 0.125 0.125 0.125
- F - - ? - - 0.25 0.25 0 0 0.125 0.125 0.125 0.125
F - ? - - ? ? 0.25 0.25 0.25 0.25 0 0 0 0
- - F - F ? - 0.125 0.125 0 0.25 0 0 0.25 0.25
- - - - F - F 0.125 0.125 0 0.25 0.125 0.125 0 0.25
- - - - F F - 0.125 0.125 0 0.25 0.25 0 0.125 0.125
- - F - - ? F 0.125 0.125 0.125 0.125 0 0 0 0.5
- - - - - F F 0.125 0.125 0.125 0.125 0.25 0 0 0.25
- - - F F - - 0.25 0 0 0.25 0.125 0.125 0.125 0.125
- - F F - ? - 0.25 0 0.125 0.125 0 0 0.25 0.25
- - - F - - F 0.25 0 0.125 0.125 0.125 0.125 0 0.25
- - - F - F - 0.25 0 0.125 0.125 0.25 0 0.125 0.125
- F F - ? ? - 0.25 0.25 0 0 0 0 0.25 0.25
- F - - ? - F 0.25 0.25 0 0 0.125 0.125 0 0.25
- F - - ? F - 0.25 0.25 0 0 0.25 0 0.125 0.125
F - ? - F ? ? 0.25 0.25 0 0.5 0 0 0 0
- F - F ? - - 0.5 0 0 0 0.125 0.125 0.125 0.125
F - ? F - ? ? 0.5 0 0.25 0.25 0 0 0 0
F F ? - ? ? ? 0.5 0.5 0 0 0 0 0 0
- - F - F ? F 0.125 0.125 0 0.25 0 0 0 0.5
- - - - F F F 0.125 0.125 0 0.25 0.25 0 0 0.25
- - F F F ? - 0.25 0 0 0.25 0 0 0.25 0.25
- - - F F - F 0.25 0 0 0.25 0.125 0.125 0 0.25
- - - F F F - 0.25 0 0 0.25 0.25 0 0.125 0.125
- - F F - ? F 0.25 0 0.125 0.125 0 0 0 0.5
- - - F - F F 0.25 0 0.125 0.125 0.25 0 0 0.25
- F F - ? ? F 0.25 0.25 0 0 0 0 0 0.5
- F - - ? F F 0.25 0.25 0 0 0.25 0 0 0.25
- F F F ? ? - 0.5 0 0 0 0 0 0.25 0.25
- F - F ? - F 0.5 0 0 0 0.125 0.125 0 0.25
- F - F ? F - 0.5 0 0 0 0.25 0 0.125 0.125
F - ? F F ? ? 0.5 0 0 0.5 0 0 0 0
F F ? F ? ? ? 1 0 0 0 0 0 0 0
- - F F F ? F 0.25 0 0 0.25 0 0 0 0.5
- - - F F F F 0.25 0 0 0.25 0.25 0 0 0.25
- F F F ? ? F 0.5 0 0 0 0 0 0 0.5
- F - F ? F F 0.5 0 0 0 0.25 0 0 0.25
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3.3 The Actual Proposal for Parallelization

3.3 The Actual Proposal for Parallelization

If we want to find only one factor of N , the procedure discussed in the previous section
is already sufficient. But if we want to find all the factors, the summations of the prob-
abilities for the detectors C through H have to be modified such that the probability of
detecting a photon can be unequal to zero even if n1, n2 or n3 is a factor of N . To test
whether n3 or n7 are factors of N , Summhammer proposes to wait for about n1/2 incre-
ments of χ1, and then start incrementing χ3 and χ7 [22]. So at detector H the measured
intensity is

IH =
1

8

n7∑

k=1

(
1−cos

(
2π(kN + n1/2)

n1

))(
1+cos

(
2πkN

n3

))(
1+cos

(
2πkN

n7

))

≈ 1

8

n7∑

k=1

(
1−cos

(
2πkN

n1

+ π

))(
1+cos

(
2πkN

n3

))(
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(
2πkN

n7

))

=
1

8

n7∑

k=1

(
1+cos

(
2πkN

n1

))(
1+cos

(
2πkN

n3

))(
1+cos

(
2πkN

n7

))
, (3.15)

and accordingly for detector G

IG =
1

8
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n1

))(
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(
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))

≈ 1
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(
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(
2πkN

n1

))(
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(
2πkN

n3

))(
1−cos

(
2πkN

n7

))
, (3.16)

where the approximations can be made if 2 · bn1/2c ≈ n1. Then we achieve a similar table
for the output of the detectors H and G as we have for detectors A and B [22].

To test whether n5 is a factor of N , we have to proceed similarly: We start incrementing
the phases χ1 and χ2, wait for about n2/2 steps and then start incrementing the phase
χ5. The intensity at detector D is then given by

ID =
1
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, (3.17)

and at detector C the intensity is

IC =
1
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, (3.18)
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3 Factoring With Mach-Zehnder Interferometers

if we assume that 2 · bn2/2c ≈ n2. This may cause problems for small, odd integers n2.
However, one can argue that testing small integers for being factors of N is simple and
not primarily of interest here. In addition, we need that n2/n1 6= 2m + 1 for m ∈ N
such that the first factor in Eqs. (3.17) and (3.18) does not vanish if n1 is a factor of N .
Nevertheless, the shift of the argument of the cosine by πn2/n1 can lead to a reduction in
the intensity. For example for n2/n1 ≈ 3/2 and n1 a factor of N , the first factor would
be a 1 instead of a 2.

In order to check whether n6 is a factor of N , we have to wait twice. First we have to
wait for n1/2 steps for the increment of χ3 to start, and then we have to wait for another
n3/2 steps until we can start incrementing the phase χ6. So for the intensity at detector
E we obtain

IE =
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and for detector F we have

IF =
1

8

n7∑

k=1

(
1−cos

(
2π(kN + n1/2 + n3/2)

n1

))(
1−cos

(
2π(kN + n3/2)

n3

))(
1−cos

(
2πkN

n6

))

≈ 1

8

n7∑

k=1

(
1+cos

(
2πkN

n1

+ π
n3

n1

))(
1+cos

(
2πkN

n3

))(
1−cos

(
2πkN

n6

))
, (3.20)

where we again used the assumptions that 2 · bn1/2c ≈ n1 and 2 · bn3/2c ≈ n3. As in the
case of detectors C and D, we have the additional constraint that n3/n1 6= 2m + 1 for
m ∈ N such that the first factor does not vanish if n1 is a factor of N . If n2 and n3 are
prime, which is a reasonable assumption, n2/n1 and n3/n1 cannot be integers, and thus
also not odd integers. Nonetheless, severe reductions in the intensities are still possible.

In addition to all these assumptions and approximations, there is still the approxima-
tion mentioned before in Eq. (3.8) which we need to generate a table with (approximate)
expectations ignoring the dependencies on N and the ni, i = 1, 2, . . . , 7 such that we have
an N and ni-independent look-up table. An excerpt is given in Table 3.5. However, in
this excerpt we can already see that the intensity distributions are not unique which is a
problem if we want to use them for the identification of factors of N . For seven Mach-
Zehnder interferometers, there is only one intensity distribution which occurs twice, but
for extensions to more interferometers, and thus testing for more possible factors at a
time, duplicates may occur even more often.

At this point, we have to come back to the small increments proposed by Summhammer
and mentioned in the beginning as here we need to be able to start the increments of χ3,
χ5, χ6 and χ7 when χ1, χ2 and χ4 are not multiples of 2πN/ni, i = 1, 2, 4. So in the
simulation, the phases are computed from l = N up to l = N · n7 + bn1/2c + bn3/2c
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according to

χ1(l) =
2πl

n1

χ2(l) =
2πl

n1

χ4(l) =
2πl

n4

, (3.21)

χ3(l) =
2π(l − bn1

2
c)

n3

χ7(l) =
2π(l − bn1

2
c)

n7

l ≥ N + bn1

2
c, (3.22)

χ5(l) =
2π(l − bn2

2
c)

n5

l ≥ N + bn2

2
c, (3.23)

χ6(l) =
2π(l − bn1

2
c − bn3

2
c)

n6

l ≥ N + bn1

2
c+ bn3

2
c. (3.24)

So the phases are incremented by 2π/ni, i = 1, 2, . . . , 7, but the messengers are only
counted if they arrive

• at detectors A or B if l mod N = 0 and l ≤ N · n7

• at detectors C or D if l mod N = bn2

2
c and l ≤ N · n7 + bn2

2
c

• at detectors E or F if l mod N = bn1

2
c+ bn3

2
c and l ≤ N · n7 + bn1

2
c+ bn3

2
c

• at detectors G or H if l mod N = bn1

2
c and l ≤ N · n7 + bn1

2
c.

In this way, at each detector n7 settings are regarded. Thus, for the normalization we
can again divide the counters, which count the messengers arriving at the detectors for
correct settings, by Ln7. For this case we used L = 100 000.

Since the N and ni-independent table is obtained by making more approximations than
in the previous case, we again give for each simulation of a set of ni, i = 1, . . . , 7, and N
also the numerical evaluation of the exact intensities. The results are given in Table 3.6.
The intensities resulting from the simulation and the numerical evaluation coincide with
each other. However, we see that the intensity distributions cannot be used to identify
factors of N . For example for N = 261 and N = 217, only n1 is a factor but the intensity
distributions differ widely and none coincides with the corresponding distribution given
in Table 3.5. So the actual intensity distributions depend heavily on the numbers ni,
i = 1, 2, . . . , 7, and N .

Compared to the complex version discussed in this section, the simple extension from
the previous section has more advantages. So there are only n7 consecutive, larger in-
crements of all phase shifters necessary, whereas in the more complex version N · n7

consecutive, smaller increments are needed. So if we assume in a serious application
n7 ≤

√
N , we have a complexity of

√
N for finding one factor using the simple version. If

we want to find all factors, we have to apply the procedure more often, but not more than
blog2(N) + 1c times in the worst case as there cannot be more factors. Thus we are still
at a complexity of

√
N log2(N) which is less than N3/2 for the proposal by Summhammer

[22] for the more complex version. The results of the exact evaluations deviate much
more from the N and ni-independent table for the more complex version than for the
simple case due to more approximations, making the identification of the factors difficult
to even nearly impossible in some cases. Moreover, the table, which is derived for this
more complicated version, is not even unique in the sense that in two cases not even one
factor can be determined with certainty. Therefore, we think the simple version is more
useful.
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3 Factoring With Mach-Zehnder Interferometers

Table 3.5: Excerpt of the expected intensities when eliminating the dependence on the ni,
i = 1, 2, . . . , 7, to have general relations. As before, “F” denotes factors of N , and “−”
denotes nonfactors. We see that the intensity distributions for n1 being a factor and for
n2 and n3 being factors are identical (highlighted in yellow).
n1 n2 n3 n4 n5 n6 n7 IA IB IC ID IE IF IG IH
- - - - - - - 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
F - - - - - - 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
- F - - - - - 0.25 0.25 0.25 0.25 0.125 0.125 0.125 0.125
F F - - - - - 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25
- - F - - - - 0.125 0.125 0.125 0.125 0.25 0.25 0.25 0.25
F - F - - - - 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5
- F F - - - - 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
F F F - - - - 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
- - - F - - - 0.25 0 0.125 0.125 0.125 0.125 0.125 0.125
F - - F - - - 0.5 0 0.25 0.25 0.25 0.25 0.25 0.25
- F - F - - - 0.5 0 0.25 0.25 0.125 0.125 0.125 0.125
F F - F - - - 1 0 0.5 0.5 0.25 0.25 0.25 0.25
- - F F - - - 0.25 0 0.125 0.125 0.25 0.25 0.25 0.25
F - F F - - - 0.5 0 0.25 0.25 0.5 0.5 0.5 0.5
- F F F - - - 0.5 0 0.25 0.25 0.25 0.25 0.25 0.25
F F F F - - - 1 0 0.5 0.5 0.5 0.5 0.5 0.5

Table 3.6: Results for the intensities at the detectors A through H for the discrete-event
simulation (upper rows) and for the numerical evaluation of the sums (lower rows) depen-
dent on the possible factors ni, i = 1, 2, . . . , 7, of N .
N n1 n2 n3 n4 n5 n6 n7 IA IB IC ID IE IF IG IH

529 3 5 7 11 13 17 19 0.083 0.138 0.097 0.170 0.142 0.097 0.117 0.120
0.082 0.139 0.097 0.171 0.142 0.097 0.118 0.119

261 3 7 11 13 17 19 23 0.202 0.272 0.263 0.219 0.001 0.001 0.200 0.173
0.203 0.273 0.264 0.219 0 0 0.200 0.172

217 7 11 13 17 19 23 29 0.247 0.247 0.096 0.096 0.142 0.162 0.233 0.238
0.247 0.247 0.097 0.096 0.141 0.162 0.234 0.238

345 3 5 7 11 13 17 19 0.492 0.503 0.116 0.110 0.223 0.145 0.186 0.173
0.495 0.505 0.116 0.110 0.224 0.146 0.186 0.173

693 3 5 7 11 13 17 19 0.472 0.001 0.067 0.054 0.339 0.371 0.372 0.374
0.474 0 0.066 0.053 0.340 0.373 0.375 0.375

115 3 5 7 11 13 17 19 0.235 0.250 0.229 0.246 0.098 0.141 0.127 0.110
0.236 0.251 0.229 0.247 0.098 0.141 0.128 0.109

325 3 5 7 11 13 17 19 0.235 0.250 0.001 0.474 0.134 0.105 0.095 0.142
0.236 0.251 0 0.476 0.134 0.105 0.095 0.142

143 7 11 13 17 19 23 29 0.233 0.250 0.278 0.221 0.246 0.249 0.249 0.239
0.234 0.251 0.279 0.221 0.247 0.250 0.250 0.239

169 7 11 13 17 19 23 29 0.100 0.141 0.123 0.118 0.256 0.251 0.276 0.238
0.100 0.141 0.123 0.118 0.257 0.251 0.277 0.239

299 7 11 13 17 19 23 29 0.109 0.137 0.146 0.101 0.473 0.001 0.260 0.228
0.109 0.137 0.146 0.101 0.476 0 0.261 0.228

377 7 11 13 17 19 23 29 0.120 0.127 0.085 0.159 0.238 0.243 0.001 0.501
0.119 0.126 0.085 0.159 0.239 0.244 0 0.504

323 7 11 13 17 19 23 29 0.240 0.001 0.001 0.240 0.088 0.069 0.070 0.187
0.241 0 0 0.241 0.087 0.068 0.070 0.187
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4 Quantum Random Walk

In this chapter, we discuss the quantum random walk after a short introduction of the
classical counterpart, the random walk. We also examine discrete-event simulations of the
random walk and the quantum random walk. Furthermore, we apply these simulations
to the experiments of quantum random walks presented in [23] and [24] which have been
performed in the laboratory.

In the experiments and simulations that we consider, the walker moves to the left or
to the right with probability one half in the classical case, and a balanced superposition
is created in the quantum case. This property is also called fair coin toss as left and right
are equally likely just like head or tails are equally probable in a coin toss with a fair coin.

We especially examine an experiment that is used to show a violation of the Leggett-
Garg inequality, which we also discuss in that given context. For this experiment, our
aim is to show that we can use the discrete-event simulation to produce data that either
violates or does not violate the Leggett-Garg inequality depending on the evaluation
method. If we are able of doing so, this means that not the quantum random walk itself
violates the Leggett-Garg inequality but the evaluation method plays an important part.

We will see that we are capable of reproducing the results of the quantum random
walk experiments with the discrete-event simulation, and also to perform non-invasive
measurements which leads to the Leggett-Garg inequality not being violated.

4.1 Classical Random Walk

Before we investigate the quantum walk, we summarize the most important facts about
the classical random walk (in one dimension). Discrete and continuous random walks in
more than one dimension play an important role in many fields in natural sciences such
as in physics and chemistry where the connection comes through the diffusion equation
[25], but also in biology [25] [26] [27] and computer science [28] [29] (here especially in
graph theory) the random walk is often applicable.

Here, we will only discuss the discrete random walk which can be illustrated by a
particle starting at position x = 0, which can in each time step move one step to the left
or to the right with probability one half each. So the particle can only move in integer
steps such that allowed positions are x = k, where k ∈ Z. After l steps, the probability
to find the particle at position x = k is given by

P (k, l) =





2−l

(
l
k+l

2

)
if l + k is even

0 otherwise
. (4.1)

Table 4.1 contains the probabilities for l = 1, . . . , 5. Since the probability distribution is
symmetric in k for all l, the expectation value of the position, 〈x〉, is equal to zero for all
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4 Quantum Random Walk

numbers of time steps l. For the random walk, the variance of the position, 〈x2〉 − 〈x〉2,
scales linearly with l (in fact for our choice of integer steps, with a slope of one) [25]:

〈x2〉 − 〈x〉2 = 〈x2〉 = l. (4.2)

For the simulation of a random walk with l time steps, we need an array D of length
2l+1 for the possible positions x ∈ {−l, −l+1, . . . , l−1, l} as after l time steps a particle
can maximally end up at the position x = ±l. Apart from that we need a position counter
pos_count initialized to zero to keep track of the particle’s position. For each time step
a (pseudo) random number r ∈ {−1, 1} is added to the position counter. After l time
steps, the detector at position pos_count detects a particle, i.e., the entry pos_count+ l
of the detector array D is incremented by one. When this is done for a total number N of
particles, D[i]/N for i ∈ {0, 1, 2, . . . , 2l} is written to a file for plotting.

Table 4.1: Probability distributions of the random walk after l = 1, . . . , 5 time steps. The
distributions are symmetric with a peak around k = 0 and decreasing probabilities at the
edges. Also clearly visible are the facts that only every second position can be occupied
and the spread of possibly occupied positions increases with l.

Time steps Position k
l -5 -4 -3 -2 -1 0 1 2 3 4 5
1 0 0 0 0 1/2 0 1/2 0 0 0 0
2 0 0 0 1/4 0 1/2 0 1/4 0 0 0
3 0 0 1/8 0 3/8 0 3/8 0 1/8 0 0
4 0 1/16 0 1/4 0 3/8 0 1/4 0 1/16 0
5 1/32 0 5/32 0 5/16 0 5/16 0 5/32 0 1/32

The normalized number of detector counts Nx/N as a function of the detector number
x for l between 2 and 7 are shown in Fig. 4.1 and for l = 19, 20 in Fig. 4.2. The binomial
shape of the distributions is clearly visible. Due to the symmetry, the mean is zero for
all numbers of steps. Since the distribution spreads with an increasing number of steps,
the variance grows with the number of steps l. In fact, the variance grows linearly with a
slope of one as illustrated in Fig. 4.3 and theoretically expected, see Eq. (4.2).
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Figure 4.1: Results of the normalized number of detector counts Nx/N as a function of
the detector number x of the simulation of the random walk for 2 up to 7 time steps.
The distributions are always symmetric and for an even (odd) number of steps only the
detectors at even (odd) positions detect particles.
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Figure 4.2: Normalized number of detector counts Nx/N as a function of the detector
number x for the simulation of the classical random walk after 19 and 20 time steps.
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Figure 4.3: Variance of the random walk depending on the number of time steps l. The
blue crosses originate from the simulation and agree nicely with the orange straight line
of slope one which is the expectation from the theory.

In summary, for the classical random walk we have that the probability distribution
of the position is a binomial distribution, i.e., it is symmetric around zero, and therefore
its mean is also zero. The distribution widens with an increasing number of steps such
that the variance grows linearly. Furthermore, the probability to find a particle at an
odd (even) position after an even (odd) number of steps is zero. In contrast, we will now
investigate the properties of the quantum walk in the following section.

4.2 Quantum Walk

After the discussion of the classical random walk, we now have a look at the quantum
version of the random walk. The quantum random walk or quantum walk was first
introduced in 1993 [30]. Then it was named quantum random walk by analogy to the
(classical) random walk. But since the quantum random walk is actually not random
but deterministic (it can be reversed as shown in Ref. [31]), it was later usually called
quantum walk.

As the classical random walk is used for many classical algorithms, researchers also
examine the quantum walk in order to find applications to quantum algorithms [32].
There are various kinds of proposals and implementations of the quantum walk using
optical lattices [24] [33] [34], ion traps [35] [36] [31], microwave cavities [37], or optical
networks [23] [38] [39]. So in recent years, the quantum walk has attracted great interest
in science.

The idea of the quantum walk is similar to that of the classical random walk. In each
step, the particle’s position x can either increase or decrease by a discrete step of length
one, depending on another degree of freedom of dimension two of the particle such as its
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spin. The particle is shifted to the right if its spin is up (|↑〉) and to the left if its spin is
down (|↓〉), for example. However, the particle’s spin is not necessarily fixed to spin up or
spin down. It can also be prepared in a superposition of both, e.g., spin up in the σx-basis
at position x = 0: (|↑〉+ |↓〉)⊗ |0〉/

√
2. After the shift, the particle is in a superposition:

(| ↑, 1〉 + | ↓,−1〉)/
√

2. Next, at each new position of the particle the transformation
creating the superposition of spin up and spin down is applied, followed by the shifting.
Of interest is that in the quantum case the particle produces an interference pattern at
the detector plane. Unlike in the classical case, the detected pattern is not necessarily
symmetric. Also the variance grows faster. A detailed introduction to quantum walks is
given in Ref. [40].

Mathematically, the quantum walk is usually performed by making use of the Hadamard
operation

H =
1√
2

(
1 1
1 −1

)
, (4.3)

or a similar transformation to create the superposition in the two-dimensional Hilbert
space HS = span{|↑〉, | ↓〉} ∼= C2 of the degree of freedom (the spin notation is used
to avoid confusion with the position space). For the position space any Hilbert space
isomorphic to HP = span{|k〉 | k ∈ Z} can be used. The particle shift can be described
by the following operator acting on HS ⊗HP

S = |↑〉〈↑ | ⊗
∑

k

|k + 1〉〈k|+ |↓〉〈↓ | ⊗
∑

k

|k − 1〉〈k|. (4.4)

After l steps, the particle is in the state |ψl〉 = (S(H ⊗ IP ))l |ψ0〉 where IP is the identity
operator acting on HP , H is the transformation creating the superposition, and |ψ0〉 is
the initial state, e.g. |ψ0〉 = |↑〉 ⊗ |0〉.

In the following, we implement the quantum walk by means of the discrete-event sim-
ulation method described in chapter 2.

4.2.1 Discrete-Event Simulation of a Quantum Walk

In this section, we describe an implementation of the quantum walk by means of a discrete-
event simulation. For the simulation of the quantum walk, we use a scheme which is
introduced in Ref. [23] by Jeong, Paternostro, and Kim to perform a quantum walk using
a classical light field. They only use optical elements like 50:50 beam splitters, phase
shifters, and photodetectors which are arranged as depicted in Fig. 4.4. The beam splitters
are used to create the superposition of the two input modes. The matrix representation
of a beam splitter is given by

MBS =
1√
2

(
1 i
i 1

)
. (4.5)

As the beam splitter produces relative phases that differ from those of the Hadamard
transformation (see Eq. (4.3)), two phase shifters having the Jones matrix representation

Mϕ1 =

(
eiϕ1 0
0 1

)
and Mϕ2 =

(
1 0
0 eiϕ2

)
, (4.6)
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where ϕ1 and ϕ2 denote the phases of the shifters, are inserted around the beam splitters
to compensate for these phase differences. This scheme is well-suited for a discrete-event
simulation of the quantum walk because it requires only a few simple optical elements. The
most sophisticated element is the 50:50 beam splitter which is implemented as described
in section 2.5 by means of a stochastic learning machine. We first consider the analytical
outcomes to later compare the simulation results with them.

In order to compute the analytical outcomes for an arbitrary number of levels of the
scheme depicted in Fig. 4.4, we have to find a canonical description of each step of the
calculation to implement it iteratively in, e.g., Mathematica in finite vector spaces. For
this purpose we introduce vectors |j〉 labeled as shown in Fig. 4.5. As this labeling is a
bit different from the usual labeling (but it simplifies the program in Mathematica),
the difference is illustrated in Fig. 4.6 for clarity. This kind of labeling leads to the beam
splitter operation Bjk acting on the vectors |j〉 and |k〉 being written as

Bjk =
1√
2

(i|j〉〈j|+ |k〉〈j|+ |j〉〈k|+ i|k〉〈k|) , (4.7)

and the operation Tjk consisting of the combination of two phase shifters and the beam
splitter (marked by the gray dashed boxes in Fig. 4.4) is given by

Tjk =
1√
2

(
iei(ϕ1+ϕ2)|j〉〈j|+ eiϕ1|k〉〈j|+ eiϕ2|j〉〈k|+ i|k〉〈k|

)
. (4.8)

For the 2-level quantum walk, for example, one has to compute

(T12 + T34)B23|2〉 = (T12 + T34)
1√
2

(i|2〉+ |3〉) =
1

2

(
ieiϕ2 |1〉 − |2〉+ iei(ϕ1+ϕ2)|3〉+ eiϕ1|4〉

)
,

(4.9)

and then add the absolute values squared of the coefficients of the vectors |4〉, |2〉 and |3〉,
|1〉, respectively, to obtain probabilities P2(−2), P2(0), and P2(2) of detection events at
detectors D−2, D0, and D2, respectively. Here, the detectors are labeled by even integers
for an even number of levels, and for an odd number of levels the detectors are labeled
accordingly by odd numbers. This results in P2(−2) = |ieiϕ1|2/4 = 1/4 for detector D−2,
P2(0) = | − 1|2/4 + |iei(ϕ1+ϕ2)|2/4 = 1/2 for detector D0, and P2(2) = |eiϕ2 |2/4 = 1/4 for
detector D2.

In general, the probability distributions for up to l levels are computed iteratively as
follows. The states |ξj〉 after the j-th level (j = 1, . . . , l) are

|ξ1〉 = Bl,l+1|l〉
|ξ2〉 = (Tl−1,l + Tl+1,l+2)|ξ1〉

...
|ξj〉 = (Tl−j+1,l−j+2 + Tl−j+3,l−j+4 + · · ·+ Tl+j−1,l+j)|ξj−1〉

...
|ξl〉 = (T12 + T34 + · · ·+ T2l−1,2l)|ξl−1〉. (4.10)
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Figure 4.4: Setup for the quantum walk as proposed in Ref. [23] for the example of the
4-level quantum walk. The cyan boxes represent phase shifters with an angle ϕ1 or ϕ2,
respectively. White boxes with a diagonal line represent 50:50 beam splitters and pink
half circles with a tail denote detectors, which are labeled in the same way as in Ref. [23].
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Figure 4.6: Sketch which stresses the difference between the usual basis (right) and the one
used for the computation with Mathematica (left). The squares with the diagonal line
represent beam splitters, and |n〉 and |n+1〉 denote basis vectors with n ∈ {1, 2, . . . , 2l−
1} where l is the number of levels.

The probability Pj(x) for a photon to be detected at detector x after going through j
levels is then obtained by summing up the squared absolute values of adjacent vectors, as
visualized in Fig. 4.5 for an even number of levels, with k ∈ {−j/2,−j/2+1, . . . , j/2−1, j/2}:

Pj(x) =

{
|〈l − 2k|ξj〉|2 + |〈l − 2k + 1|ξj〉|2 if x = 2k

0 otherwise
. (4.11)

For j even, 2k is also even, and for j odd, 2k is also odd, so photons can only be detected
in even or odd detectors depending on the number of levels.

In the Mathematica program that implements this procedure the standard basis
{ej | j = 1, ..., 2l} is used for the abstract vectors {|j〉 | j = 1, ..., 2l} where l is the number
of levels. In Table 4.2, the analytical expressions for up to 5 levels are shown. The
dependence on ϕ2 is visualized in Fig. 4.7 taking 7 levels as an example. For a fixed
ϕ2 = −π/2, the distributions for up to ten levels are depicted in Fig. 4.8.

Table 4.2: Analytical results for the probability distributions of the quantum walk for
levels 1 to 5. The distributions only depend on ϕ2 and are independent of ϕ1. The
distributions for more than 2 levels can be either symmetric or asymmetric w.r.t. x = 0
depending on ϕ2. For levels 1 and 2, the distributions are symmetric and coincide with
the ones of the classical random walk.
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Figure 4.7: Dependence of the probability distribution Pj(x) on the phase shift ϕ2 for
each detector x in the 7-level quantum walk. The curves for detectors x = −7 and x = 7
are equal and constant. For ϕ2 = ±90°, the detectors x and −x for x = 1, 3, 5, 7 count
the same amount of particles and therefore the distribution is symmetric for this setting.
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Figure 4.8: Visualization of the analytical results of the quantum walk for ϕ2 = −π/2 for up
to ten levels. The lines are guides to the eye only. The deviation from the classical random
walk is clear as with an increasing number of levels, the maxima of the distributions move
(in this case symmetrically) away from the center to the margins.

The analytical results given in Table 4.2 show that the distributions do not depend
on ϕ1, and that for more than 2 levels the dependence on ϕ2 is given by scaled and
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Figure 4.9: Results for the normalized number of detector countsNx/N as a function of the
detector number x, obtained by a discrete-event simulation of the quantum walk for N =
100 000 repetitions, ϕ1 = π/2 and ϕ2 = −π/2 and for different numbers of levels. Compared
to the classical random walk (see Fig. 4.1), for more than 3 levels the distributions differ
because interference becomes important. The distributions match with the analytical
expectation visualized by stars in a darker shade of the color corresponding to the number
of levels.

shifted cosines. The deviations from the classical distribution are caused by interference
effects. These deviations can also be seen in Fig. 4.7 where the dependence on ϕ2 is
clearly visible: The distribution is not symmetric w.r.t. x = 0 like in the classical case
except for ϕ2 = ±90°. For ϕ2 = 0° and ϕ2 = ±180°, the asymmetry is strongest. In Fig.
4.8, one can see how the maxima of the distribution move outwards for a larger number
of levels. Moreover, it is clearly visible that detectors with an odd (even) number only
register particles if the number of levels is also odd (even).

In what follows, we discuss the results of the discrete-event simulation of the quantum
walk. We use the setup shown in Fig. 4.4 and presented in Ref. [23]. In the discrete-event
simulation, at any time there is only one photon in the setup. Only after the arrival of a
photon at the detector another photon is sent. The simulation supports arbitrarily many
levels. The number of photons sent through the setup per run has to be increased starting
from a given number of levels because the number of beam splitters grows, and for the
beam splitters to work properly, a certain number of photons must have passed through
them. For each run, we send N = 100 000 photons through the setup. This is sufficient
to go up to 7 levels and collect good statistics. The results of the simulations for 2 up to
7 levels and for the angles ϕ1 = π/2 and ϕ2 = −π/2, which are the angles chosen in the
experiment [23], are shown in Fig. 4.9. The outcomes agree with the analytical results, so
the discrete-event simulation of the quantum walk indeed produces the quantum result.
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Figure 4.10: Dependence of the simulated distribution Nx/N on the detector number x for
the 4-level quantum walk for various angles ϕ1 and ϕ2 = −π/2. The number of repetitions
is N = 100 000.
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Figure 4.11: Dependence of the simulated distribution Nx/N on the detector number x
for the 4-level quantum walk for various angles ϕ2 and ϕ1 = π/2.

From the analytical calculation, we expect the simulation results to depend only on ϕ2.
To investigate the dependence of the simulated distributions Nx/N on the angles ϕ1 and
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ϕ2, we run the simulation with different values for these angles. The results when varying
ϕ1 are shown in Fig. 4.10, and the results when varying ϕ2 can be seen in Fig. 4.11. From
Fig. 4.10 it is seen that the simulated distribution of the 4-level quantum walk does not
depend on ϕ1. Results for different numbers of levels show the same behavior (results
not shown). This finding agrees with the analytical result (see Table 4.2). In Fig. 4.11,
a clear dependence of the simulated distribution on the angle ϕ2 is seen. For ϕ2 = −π/2
the distribution is symmetric. With increasing (decreasing) values for ϕ2 the distribution
becomes asymmetric with a peak on the left (right). These results show that varying the
angle ϕ2 suffices to reproduce both the symmetric and the different asymmetric quantum
walk results obtained analytically. The variation of ϕ1 does not change the outcome.
Hence, the experimental setup could have been simplified by omitting the phase shifter
with angle ϕ1 and it would still produce the same results.

Investigating the mean and variance of the position x of the quantum walk, we find
that the mean depends on ϕ2 (see Fig. 4.12) and the variance grows faster than for the
classical random walk, namely quadratically as visualized in Fig. 4.13.
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Figure 4.12: Mean of the position x of the quantum walk dependent on the angle ϕ2. As
an example, the 4-level and the 8-level quantum walk are shown with N = 100 000 and
N = 200 000, respectively. Lines visualize the analytical results, dots and stars show the
results from the simulation. For ϕ2 6= π/2, the mean differs from zero which is the mean
of the random walk.

34



4.2 Quantum Walk

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

〈x
2
〉−
〈x
〉2

Number of levels l

Simulation
Parabola Fit

Figure 4.13: Variance of the position x of the symmetric quantum walk dependent on the
number of levels l. Blue stars come from the simulation and the black line is a fitted
parabola of the from ax2 as the variance is expected to be zero for zero levels due to the
preparation. The parameter a is determined to be a = 0.290 ± 0.001. Obviously, the
variance grows quadratically, which is different from the classical random walk.

Conclusion

Summarizing the results of the discrete-event simulation of the quantum walk, we can say
that we are able to reproduce the distributions of a quantum walk of an arbitrary number
of levels by means of the suggested experimental setup introduced in Ref. [23]. We find
that the analytical and the numerical results are in very good agreement. Furthermore,
the angle ϕ1 does not contribute to the shape of the distribution but ϕ2 can be used to
achieve symmetric and asymmetric distributions. The asymmetric ones lead to the mean
of the position x being different from zero. Finally, we could determine the prefactor
a = 0.290± 0.001 of the parabola describing the growth of the variance of the position x
of the quantum walk. The square root of this result

√
a ≈ 0.54 is not far away from the

number 0.6 given in Ref. [35] for the prefactor of the standard deviation of the quantum
walk.

Now that we have investigated the basics of the quantum walk, we discuss and simulate,
in the following sections, an experiment which uses the quantum walk to show a violation
of the so called Leggett-Garg inequality [24]. First, we have a look at the Leggett-Garg
inequality itself, then we simulate the experiment by utilizing a discrete-event simulation,
and finally we discuss the results and compare them with the experiment to see whether
the quantum walk really violates the Leggett-Garg inequality.
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4.2.2 Leggett-Garg Inequality

In Ref. [41], Leggett and Garg derive an inequality for correlations Kij = 〈QiQj〉 of
quantities Qi measured at times ti which can attain the values ±1. For their derivation
Leggett and Garg assume “macroscopic realism” and “non-invasive measurability” which
they denote by (A1) and (A2), respectively. From (A1), they conclude that for an ensemble
of systems prepared in some way at time t0, joint probability densities like ρ(Q1, Q2),
ρ(Q1, Q2, Q3) (t0 < t1 < t2 < t3) and correlation functions Kij can be defined. Moreover,
these “probability densities must be consistent” such that the following relations hold [41]:

∑

Q1=±1

ρ(Q1, Q2, Q3) = ρ(Q2, Q3)

∑

Q2=±1

ρ(Q1, Q2, Q3) = ρ(Q1, Q3)

∑

Q3=±1

ρ(Q1, Q2, Q3) = ρ(Q1, Q2). (4.12)

So they say, given Eq. (4.12), that it is possible to measure only pairs of Q1, Q2, and
Q3 in an experiment, and get the same results as if the complete triple was measured.
Assuming that Eq. (4.12) is satisfied, one can indeed derive (see Ref. [42]) the inequality

〈Q1Q2〉+ 〈Q2Q3〉 − 〈Q1Q3〉 ≤ 1, (4.13)

where

Kij = 〈QiQj〉 =
∑

Qi=±1

∑

Qj=±1

QiQjρ(Qi, Qj) (4.14)

is computed from pairs only. If Eq. (4.12) is not fulfilled, however, one has to use

Kij =
∑

Q1=±1

∑

Q2=±1

∑

Q3=±1

QiQjρ(Q1, Q2, Q3). (4.15)

In an experiment, Kij can be calculated from the measurement outcomes of N repeti-
tions as Kij =

∑N
α=1 Qi,αQj,α/N , where in each repetition α, the quantities Q1, Q2, and

Q3 must be measured. Then one can use the inequality

Q1Q2 +Q2Q3 −Q1Q3 ≤ 1, (4.16)

which holds for each triple measured in a single run of an experiment, to derive Eq. (4.13)
for the expectation values of the correlations:

〈Q1Q3〉 =
1

N

N∑

α=1

Q1,αQ3,α ≥
1

N

N∑

α=1

(Q1,αQ2,α +Q2,αQ3,α − 1) = 〈Q1Q2〉+ 〈Q2Q3〉 − 1.

(4.17)

Here, the requirement of measuring the triple and not only pairs is essential such that in
an experiment, Q1, Q2, and Q3 have to be measured in a single run if Eq. (4.12) is not
fulfilled.

Summarizing these important remarks on the Leggett-Garg inequality, one can say
that the Leggett-Garg inequality is always satisfied if triples are measured. If only pairs
are measured and Eq. (4.12) does not hold, it can be violated.
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4.2.3 Investigation of a Quantum Walk Experiment Violating the
Leggett-Garg Inequality

Robens et al. present in their paper [24] an experiment with cesium atoms in a state-
dependent lattice potential to produce the outcome of a 4-level quantum walk. They make
use of two internal hyperfine states of the electronic ground state, |F = 4, mF = 4〉 and
|F = 3, mF = 3〉, of the cesium atom which then experience different lattice potentials.
A microwave pulse prepares the atom in a superposition of these two states and another
operation moves the atom one lattice site to the left or the right if the atom is in the state
|F = 4, mF = 4〉 or |F = 3, mF = 3〉, respectively.

A slightly modified variant of this experiment can be simulated using the discrete-event
simulation method. In the simulation, the atoms are replaced by photons of which the
horizontal (|H〉) and vertical (|V 〉) polarizations represent the two states of the atoms.
The operations on the atoms are replaced by analogous operations on the photons using
the optical elements introduced in chapter 2.

In order to mimic the separation of the two states of the atom in the experiment, we
make use of polarizing beam splitters to separate the horizontally and vertically polarized
photons. The polarizing beam splitters are arranged as shown in Fig. 4.14. For the
creation of the superposition of the states, Hadamard transformations, i.e., half-wave
plates combined with phase shifters by π/2 (see section 2.4), are inserted as depicted
in Fig. 4.14. This simple setup however cannot yet lead to the expected results of a
quantum walk because interference is missing. In the simulation based on the polarization
of photons, an extra transformation will be necessary to include interference.

Using the notation that the vector |k〉 is directed to beam splitter k as visualized in Fig.
4.14 by the gray dashed lines, the description is close to the mathematical description used
in section 4.2.1. For the analytical calculation of the probabilities of detection events at
the various detectors, taking into account the actions of the polarizing beam splitters and
the Hadamard transformations, and a simple addition of the vectors is already sufficient:

(SR)4 |H, 0〉 = (SR)3 S
|V, 0〉 − |H, 0〉√

2

= (SR)3 |V, 1〉 − i|H,−1〉√
2

= (SR)2 S
|V, 1〉+ |H, 1〉 − i|V,−1〉+ i|H,−1〉

2

= (SR)2 |V, 2〉+ i|H, 0〉 − i|V, 0〉 − |H,−2〉
2

= (SR)S
|V, 2〉+ |H, 2〉 − 2i|H, 0〉 − |V,−2〉+ |H,−2〉

2
√

2

= (SR)
|V, 3〉+ i|H, 1〉+ 2|H,−1〉 − |V,−1〉+ i|H,−3〉

2
√

2

= S
|V, 3〉+|H, 3〉 −i|H, 1〉+i|V, 1〉 − 3|H,−1〉+|V,−1〉 −i|H,−3〉+ i|V,−3〉

4

=
|V, 4〉+ i|V, 2〉+ i|H, 2〉+ |V, 0〉+ |H, 0〉+ i|V,−2〉 − 3i|H,−2〉+ |H,−4〉

4
(4.18)
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where

R =
1√
2

(
|V 〉〈V | − |H〉〈H|+ |V 〉〈H|+ |H〉〈V |

)
⊗
∑

k

|k〉〈k| (4.19)

represents the rotation of the polarization, i.e., the Hadamard transformation, and

S =
∑

k

(
|V, k + 1〉〈V, k|+ i|H, k − 1〉〈H, k|

)
(4.20)

describes the polarizing beam splitter. Calculating the absolute values squared at each
position to obtain the probability P (x) for detector number x gives: P (−2) = 1/16,
P (−1) = 5/8, P (0) = 1/8, P (1) = 1/8, and P (2) = 1/16. This is the expected distribu-
tion of a 4-level quantum walk (see also table 4.2 for ϕ2 = 0 but note that the labeling of
the detectors is different).

D
2

D
1

D
0

D
−1

D
−2

|4>

|3>
|2>

|1>

|0>

|−1>

|−3>

|−4>

|−2>

Figure 4.14: Setup in which the atom state transformations from the experiment in Ref.
[24] are translated into optical elements. Blue-white boxes represent polarizing beam
splitters which transmit vertically polarized light, and reflect horizontally polarized light.
White half-circles with a tail denote detectors. Note: The labeling of the detectors is
different from the one used in section 4.2.1 due to different labeling procedures in Refs.
[23] and [24]. Gray dashed lines accompanied by a number visualize the naming of the
vectors of the analytical calculation. The yellow boxes denote Hadamard transformations,
corresponding to half-wave plates with angle ϑ = π/8 followed by a phase shift of π/2.
The incoming beam consists of horizontally polarized photons. This setup is not yet
sufficient for the simulation of a quantum walk as interference, which happens naturally
in the atom experiment, is lacking and therefore has to be considered additionally in the
photon simulation.

As horizontally and vertically polarized photons do not interfere, in the simulation,
interference has to be realized by an extra device. Examining each step of the analytical
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calculation, we find that the addition of the vectors, which is easily done in the analytical
calculation, is missing in the simulation. Interpreting the addition of the vectors in the
physical setup of beam splitters and modes suggests that we have to put two photons
with orthogonal polarizations, coming from different modes, into the same mode in order
to get the required effect. A device performing exactly this process, and therefore being
a suitable device to induce the interference, is the polarizing beam splitter, as it cannot
only separate but also unite two modes. The required functionality of the polarizing beam
splitter is illustrated in Fig. 4.15 for clarity. So instead of considering only a polarizing
beam splitter followed by a Hadamard transformation on the polarization, we add a
second polarizing beam splitter before the Hadamard transformation. The final setup
for the quantum walk with horizontally and vertically polarized photons is shown in Fig.
4.16. Although half of the polarizing beam splitters seem unnecessary in the upper line,
we put them there such that all components of the setup consist of the same elements
just like in the experiment.

This setup indeed produces the expected result of the asymmetric 4-level quantum
walk as illustrated in Fig. 4.18 by the yellow bars. So the quantum walk can also be
reproduced by making use of the polarization of photons, which is also suggested in Ref.
[43] with a slightly different scheme.

h
a’

a
v v h

a + a’

Figure 4.15: Sketch of the addition of vertically polarized light in the mode a and hori-
zontally polarized light in the mode a′ in a polarizing beam splitter. Since the polarizing
beam splitter reflects horizontally polarized light but transmits vertically polarized light,
both modes a and a′ end up in the same output mode.
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Figure 4.16: Setup for the quantum walk with polarized single photons as it is used in the
discrete-event simulation. Blue-white boxes represent polarizing beam splitters transmit-
ting vertically polarized light and reflecting horizontally polarized light. The yellow boxes
denote the Hadamard transformation on the polarization, i.e., a half-wave plate followed
by a phase shifter. Red lines illustrate vertically polarized photons, blue lines visualize
horizontally polarized photons, and green lines depict superpositions of vertically and
horizontally polarized light. The input beam consists of horizontally polarized photons.
In this experiment, the source emits monochromatic light without fluctuations.
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Figure 4.17: Sketch of the setup shown in Fig. 4.16 with the pink circles denoting at which
positions and at which times a measurement takes place. The light blue boxes represent
the elements encircled with the dashed gray lines in Fig. 4.16. The connecting lines
between the pink circles illustrate that the corresponding measurements are performed at
the same times.

Robens et al. show in Ref. [24] that their experiment violates the Leggett-Garg inequal-
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ity

K = 〈Q(t2)Q(t1)〉+ 〈Q(t3)Q(t2)〉 − 〈Q(t3)Q(t1)〉 ≤ 1 (4.21)

where the Q(ti) are real numbers with |Q(ti)| ≤ 1 and ti denote the times at which a
measurement is performed. The times ti are indicated in Fig. 4.17 by pink circles within
the sketch of the setup. In the experiment, Q(t1) is set to Q(t1) = 1 as Robens et al. define
the state preparation as their first measurement of the state. The time t2 is after the first
splitting, and there the position of the atom is measured. The two possible outcomes are
then ±1. Independently of the outcome, they set Q(t2) = 1. The third measurement is a
x-position measurement after the 4-th level of the quantum walk and Q(t3) is defined as

Q(t3) =

{
−1 if outcome x ≤ 0

1 if outcome x > 0.
(4.22)

Due to these choices, 〈Q(t2)Q(t1)〉 = 1 and 〈Q(t3)Q(t1)〉 = 〈Q(t3)〉 such that Eq. (4.21)
simplifies to

K = 1 + 〈Q(t3)Q(t2)〉 − 〈Q(t3)〉 ≤ 1. (4.23)

In order to obtain 〈Q(t3)〉 the average of the measured outcomes of Q(t3) for a fixed
number of repetitions can be computed. In order to calculate 〈Q(t3)Q(t2)〉, Robens et al.
use two additional runs of the experiment (including also a fixed number of repetitions).
So they measure the position at t2 by an ideal negative measurement and reject those
atoms that are measured at position −1 (+1) in the second (third) run. Atoms which
are not rejected continue their way and are then measured at t3. The average over the
remaining outcomes of Q(t3) is then denoted by 〈Q(t3)〉x2 where x2 ∈ {−1, 1} indicates
which atoms are not rejected at t2. The left-hand side of the Leggett-Garg inequality is
then computed by Robens et al. as

K = 1 +
∑

x2=±1

P (x2; t2)〈Q(t3)〉x2 − 〈Q(t3)〉 (4.24)

where P (x2; t2) denotes the probability that the atom was at position x2 at t2. The value
they finally compute for K (for the fair coin toss) is [24]

K = 1.435± 0.074 > 1. (4.25)

To reproduce this result, we run our discrete-event simulation program for the 4-level
quantum walk three times. In the first run, we compute 〈Q(t3)〉 without selecting the
photons at level 2. The number of repetitions in the simulation is set to N = 100 000.
For the other two runs, we reject the photons traveling to the left or the right at level 2,
respectively, like Robens et al. do in their experiment with the atoms. Then we compute
K as given in Eq. (4.24) from three separate runs. Doing this with different seeds for the
PRNG gives on average

K = 1.4966± 0.0051 > 1 (4.26)

The result obviously violates the Leggett-Garg inequality and is even close to the theoret-
ical maximum of K = 1.5 achievable with this type of experiment [24]. The distributions
gained from the three runs are shown in Fig. 4.18.
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Figure 4.18: Results of the normalized number of detector counts Nx/N as a function of
the detector number x obtained by the discrete-event simulation based on the procedure of
the experiment. The number of repetitions for each of the three runs is N = 100 000. The
yellow bars represent the distribution of the 4-level quantum walk without any selection.
The green (gray) distribution shows the outcomes if the photons leaving the first beam
splitter to the left (right) are rejected. The distributions coincide with those presented in
Ref. [24].

To verify that the Leggett-Garg inequality holds for the classical random walk, we
compute the three components of K in three separate runs, i.e. in the same manner as for
the quantum walk, but by using the simulation of the classical random walk discussed in
section 4.1. The mean of the result for K using the classical random walk with different
seeds is determined to be

Kclass = 0.996± 0.010, (4.27)

which is very close to one. So for the classical random walk we obtain K ≈ 1 with only
statistical fluctuations. Indeed, the Leggett-Garg inequality holds in the classical case
since no violation (apart from the statistical fluctuations) could be achieved. This is to
be expected as for the classical random walk Eqs. (4.12) hold.

As we just demonstrated, the Leggett-Garg inequality can also be violated by a classical
simulation of the quantum walk in which the position of the particle is always well-defined.
The important question is now, whether the inequality is still violated if no particles are
rejected, i.e. the particles’ positions at t2 are stored for a single run with N repetitions,
and K is computed from this data only. The advantage of the simulation is that this
non-invasive “measurement” at t2 can be easily carried out, while it is not accessible in
a real experiment. The difference in the outcomes of these two ways to “measure” the
positions at t2 can be seen in Fig. 4.19. This data, gained from single runs with different
seeds for the random number generator, yields

K = 0.9999 ≤ 1, (4.28)
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which means that the Leggett-Garg inequality is not violated if the correlations of the
pairs are computed from one data set only and not from three different ones. Since this
is the only thing that changed between those two computations, it is not the quantum
walk itself which is “incompatible with well-defined, classical trajectories”, as stated in
Ref. [24].
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Figure 4.19: Comparison of the results of the normalized number of detector counts Nx/N
as a function of the detector number x for two versions of the quantum walk experiment:
The green and gray bars illustrate the distributions obtained by rejecting the left or the
right going part of the particles, respectively, and the blue and pink distributions show the
outcomes where the positions at t2 are stored but the particles are not rejected. Obviously,
the distributions are not the same. The yellow bars show the distribution of the quantum
walk without selection.

Conclusion

Summarizing the results of this analysis, we can reproduce the results of the quantum
walk, and likewise the outcome of the experiment of Robens et al. including the violation
of the Leggett-Garg inequality, with a discrete-event simulation of photons where the state
of the atoms in the original experiment is replaced by the polarization of the photons.
Moreover, we are able to simulate a really non-invasive measurement such that we can
reduce the three runs needed in the experiment to a single run providing all necessary
data. Evaluating this data set yields that the Leggett-Garg inequality is not violated.

Supported by the results of this investigation, we state that one can only conclude
that quantum mechanics violates assumption (A2), i.e. non-invasive measurability, since
a measurement in an experiment cannot be performed non-invasively as it can be done
in the simulation. The simulation however is event-based, i.e., the simulated particle
always has a well-defined position and therefore obeys (A1), the macroscopic realism.
Nevertheless, it is possible to violate the Legett-Garg inequality in the same way as done
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in the experiment. Making use of the advantage of really non-invasive measurability in
the simulation leads to the Leggett-Garg inequality being satisfied. The reason why this
experiment leads to a violation of the Leggett-Garg inequality is that the measurement at
time t2 is still invasive. Although Robens et al. claim their measurement is non-invasive,
they still need three runs of the experiment. This is because they can never measure
triples but only pairs. The measurement at t2 leads to

∑

x2=±1

ρ(x1, x2, x3) = ρ(x1, x3) (4.29)

not being satisfied since the rejection of the photons being at the “wrong” position after
the measurement leads effectively to an addition of the outcomes (i.e. modulus squared)
of two 3-level runs shifted to the left and right, respectively, instead of the outcome of the
4-level quantum walk. The distribution of two added 3-level quantum walks (left hand
side of Eq. (4.29)) obviously differs from the distribution of the 4-level run (right hand
side) such that Eq. (4.29) cannot be satisfied in this experiment. So the selection at t2
changes the initial state, i.e. the outcome of the first measurement. This is why in the
second and third run, measurements take place effectively only at t2 and at t3. Obviously,
in the first run, measurements are only at t1 and at t3. Removing particles at time t2
changes the probability densities for the measurement at t3. Therefore, Robens et al.
cannot measure triples in a single run and the Leggett-Garg inequality can be violated
just because of the invasive character of the measurement.

So it is sufficient that Eq. (4.29) is not fulfilled in the experiment for the Leggett-Garg
inequality to be violated. However, measuring all three values in one run (simulation),
the inequality holds which means that invasive measurement already suffices to make
Eq. (4.29) invalid, since the Leggett-Garg inequality can be forced to be violated even
with the discrete-event simulation. Therefore, one cannot conclude from a violation of
the Leggett-Garg inequality that the system does not obey macroscopic realism, i.e. the
particle does not have a well-defined state. The only conclusion which can be drawn
is that in this experiment non-invasive measurability was not achieved, which is enough
to cause a violation of the Leggett-Garg inequality. A similar, mathematical argument
concerning violations of the Leggett-Garg inequality is also given in Ref. [44].
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In this chapter, we will focus on cryptographic problems. We start with classical cryp-
tography (where classical here means the current, non-quantum technology), and then
proceed to quantum key distribution, where we will especially consider the so-called BB84
protocol and simulate an experiment based on further development of this protocol.

Already in ancient times people encrypted their secret messages when sending them
through an untrustworthy deliverer to the recipient, or in case the sender got attacked
such that not everyone able to read was also able to read the secret message. Nowadays
things have changed, but still we have to encrypt our messages when we send them via
a public channel like a telephone line or the internet and we do not want everybody to
read them. There are many different cryptographic protocols with various advantages
and disadvantages, and therefore they are not all equally well suited for all cryptographic
purposes.

In the following we first have a look at a few classical, currently used cryptosystems, and
then we discuss in more detail quantum key distribution where quantum physics is used to
implement cryptographic protocols. But before we start with the description of classical
cryptosystems, we have to introduce the basic terminology including the definition of a
cryptosystem.

5.1 Classical Cryptography

Definitions and Terminology

When talking about cryptography, the sender is usually called Alice and the recipient is
called Bob. A third party adversary, often an eavesdropper called Eve, is to be prevented
from reading a secret message on the public channel. Alice aims at hiding the message
from Eve but making it still readable to Bob. She has to encrypt her secret message such
that only Bob is able to decrypt it. For this purpose, they have to agree on a cryptosystem
and a key. This system is mathematically defined as follows:

A cryptosystem (M, C,K, E ,D) consists, according to Ref. [45], of a finite setM of all
possible messages or plaintexts m, a finite set C of all possible ciphertexts c, a key space
K which is a finite set of all possible keys k, a set E of encryption functions

ek :M→ C for each k ∈ K, (5.1)

and a set D of decryption functions

dk : C →M for each k ∈ K. (5.2)

The encryption and the decryption functions have to fulfill certain criteria. The most
important and obvious criterion is that dk(ek(m)) = m for all m ∈ M, k ∈ K since
Bob should be able to decrypt any message Alice might send. Moreover, ek(m) and dk(c)
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should be easy to compute, i.e., there should be efficient algorithms to compute ek(m) and
dk(c) for known k such that the computations do not take a long time. However, solving
c = ek(m) or m = dk(c) for k should be infeasible for all cryptosystems where the key k is
reused, so that Eve cannot retrieve the key from an intercepted ciphertext-message pair
for all following communications between Alice and Bob. The set of functions ek and dk
is also called cipher.

Ideally, the encryption functions return a ciphertext c which reveals no information
about the original plaintext m to anyone who does not have the corresponding key k.
Many cryptosystems do not satisfy this criterion but they are nevertheless considered
provably secure cryptosystems, i.e., it can be proven that breaking the system is at least
as hard as solving, e.g., a problem in the class NP (non-deterministic polynomial) that is
assumed not to be in the class P (polynomial), such as factoring. However, since NP 6= P
has not yet been proven, this statement still relies on assumptions of computational
hardness [45].

A cryptosystem is defined to have perfect secrecy if P (m̂ = m) = P (m̂ = m | ĉ = c).
This means, the probability that the plaintext is m is equal to the conditional probability
that the plaintext is m given that the ciphertext c is observed, for all m ∈M, c ∈ C [45].
If a cryptosystem can be proven to have perfect secrecy, it is unconditionally secure, i.e.,
even if Eve has access to infinite computational power, she cannot break the system. A
necessary condition for perfect secrecy is that there have to be at least as many possible
keys as there are possible plaintexts [45]. This implies that the key must not be shorter
than the plaintext, which is an impractical condition as then sharing a secret key ad hoc
is at least as difficult as sending the message securely. A cipher that has perfect secrecy
is the one-time pad which, among others, will be discussed in the next section.

There are two kinds of cryptosystems, symmetric and asymmetric cryptosystems. For
a symmetric cryptosystem, the encryption and decryption is symmetric, i.e., the same key
is used for encryption and decryption. Hence, the two parties Alice and Bob have to share
the same key in order to use a symmetric cryptosystem. This is why symmetric ciphers
have the disadvantage of key management: The key has to be distributed in advance and
kept secret until it is needed. Moreover, each communicating pair needs its own secret
key, resulting in the number of required keys growing quadratically [46].

Asymmetric cryptosystems employ different keys for the encryption and decryption.
The decryption key of the recipient has to be kept private, but the key for encryption
can be made public. Thus, anybody is able to encrypt a message, but only the legitimate
recipient can decrypt and read it. This is comparable to a mailbox where everyone can
put in a message, but only the owner can open the mailbox and read the messages [47].
For that reason, asymmetric cryptosystems are called public-key cryptosystems and were
first proposed by Diffie and Hellman in 1976 [46] as a solution for the above-mentioned
disadvantages of symmetric cryptosystems. For systems of this kind, Bob possesses a pair
of keys, namely a private key kd for decryption and a public key ke for encryption.

A Survey of Selected Classical Cryptosystems

Examples of currently popular, and therefore often used, cryptosystems are AES [48]
(the Advanced Encryption Standard) as a symmetric cipher and RSA (after the inventors
Rivest, Shamir, and Adleman) [49] as a public-key cryptosystem.

AES is a block cipher, meaning that the message is split up into blocks of a fixed length
l, and each of these blocks is encrypted separately. Therefore, it is quite fast and can
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be used for large amounts of data especially on parallel architectures. For block ciphers,
there exist different modes of operation that combine consecutive blocks to prevent blocks
of length l containing the same data from being revealed. This can be a problem for
encrypted images [50].

For RSA, calculations are performed in a finite multiplicative group Zn where n ∈ N is
different for each user. This means that every message has to be represented as a number
m ∈ Zn. Apart from that, each user has his own keys kd = DB and ke = (EB, nB) where
EB · DB ≡ 1 (mod (pB − 1)(qB − 1)), pB, qB prime with pB · qB = nB (the subscript B
denotes that the variables are special for each user, here Bob). When Alice wants to send
a secret message m to Bob, she does not need her own key but she can use Bob’s public
key ke to encrypt her message m to the ciphertext

c ≡ mEB (mod nB), (5.3)

and then send it to Bob. He, in turn, is the only one that can decrypt the message by
applying the private key kd to the ciphertext:

cDB ≡ mEB ·DB ≡ mEB ·DB (mod (pB−1)(qB−1)) ≡ m1 ≡ m (mod nB). (5.4)

For more details on number theory regarding RSA see, for example, Ref. [49]. Eve can
have the public key (EB, nB), but she cannot use it to decrypt the message immediately or
to recover the private key DB as this would require factoring nB = pBqB. The advantage
of this scheme is that Alice and Bob do not have to share a secret key in advance and the
number of required keys grows only linearly in the number of users. As the computation
of the encryption and decryption is expensive compared to those of a symmetric cipher
and therefore not suited for the encryption and decryption of large amounts of data, RSA
is often used for small amounts of data or to distribute a key for a symmetric cipher
like AES. Another advantage is that a slight modification of this cryptosystem also gives
a signature scheme to sign messages digitally [49]. So if Alice also possesses a pair of
private (kd = DA) and public (ke = (EA, nA)) keys, she can encrypt the message m
with her private key first to the signature s ≡ mDA (mod nA) and then encrypt the
pair (m, s) =: o with Bob’s public key oEB ≡ c (mod nB). Bob can then decrypt the
ciphertext with his private key first cDB ≡ o ≡ (m, s) (mod nB) and, after that, decrypt
s with Alice’s public key: sEA ≡ m0 (mod nA). If m0 = m, Bob can be sure that the
message was sent by Alice. Breaking the RSA cryptosystem can be proven to be at least
as difficult as factoring [49].

The one-time pad, patented by Gilbert Vernam and therefore sometimes called Vernam
cipher, is an example for a symmetric cryptosystem that has perfect secrecy if the key is
truly random (pseudo random numbers that still show some structure are not satisfactory)
and it is at least as long as the message. Furthermore, it has to be used only once [45].
So the key has to be generated by a real random number generator which takes some
time, especially if long messages are to be encrypted. Transmission of such a key is also a
problem, and since the key is not to be used more than once, transmission has to be done
often. If the key is used more than once, decryption of the first ciphertext with the second
ciphertext removes the key, and one ends up with the first message encrypted with the
second message. As this data is not random but exhibits structures of the language, it is
breakable. Moreover, if Eve is able to intercept a plaintext-ciphertext pair, she can easily
obtain the key, and then she could read all the following communications between Alice
and Bob. Encryption and decryption on the other side are quite simple: If we consider

47



5 Cryptography

a sequence of N bits m1m2m3 . . .mN representing the message, encryption is done by
XORing (exclusive-or operation ⊕) the N -bit message with the N -bit key k1k2k3 . . . kN :

ci = mi ⊕ ki, ∀i = 1, 2, . . . , N (5.5)

resulting in the N -bit ciphertext c1c2c3 . . . cN . Decryption is done equivalently by XORing
the ciphertext with the key

ci ⊕ ki = mi ⊕ ki ⊕ ki = mi, ∀i = 1, 2, . . . , N (5.6)

as ki ⊕ ki = 0 for ki = 0 or ki = 1. Although the one-time pad has perfect secrecy and
the encryption and decryption functions are easy to compute, the impractical handling of
the key makes the one-time pad a rarely used cipher [45].

Although the security of RSA and many other public-key cryptosystems is based on
the assumption that certain computational problems like factoring or computation of
the discrete logarithm are hard (i.e., the number of operations grows exponentially in the
number of bits) to solve on a (classical) computer, it is nowadays one of the most often used
cryptosystems. But, besides the fact that the hardness of these problems is not proven for
classical computers, another threatening problem is that on a quantum computer factoring
(and computation of the discrete logarithm) can in principle be performed efficiently, i.e.,
in polynomial time as proven by Shor [21]. So if a sufficiently large quantum computer
has been built, many currently used cryptosystems are not secure anymore. Although
there are still (classical) cryptosystems that are resistant against a quantum computer
like the unconditionally secure one-time pad, there is still the problem of performing key
distribution without relying on public-key cryptosystems which are not (yet) proven to
be resistant against the power of a potential quantum computer. In the following, we will
therefore outline how quantum physics may provide a remedy in finding new secure and
resistant techniques for key distributions.

5.2 Quantum Key Distribution

Since the invention of Shor’s efficient factoring algorithm for a quantum computer [21],
it has become evident that many of the currently used classical cryptosystems are not
secure anymore once a sufficiently large quantum computer becomes available. On the
other hand, there exists at least one cryptosystem, namely the one-time pad, which has
perfect secrecy and is therefore unbreakable even for a quantum computer. The only
problem is the sharing of the random, secret key that is as long as the message. That is
where quantum physics comes in.

In 1984 Bennett and Brassard proposed a key distribution protocol [51] (later called
BB84) for the one-time pad (but also applicable to other symmetric ciphers) based on
the laws of physics. The BB84 protocol is the first cryptographic protocol making use of
quantum mechanics in order to distribute a secret key ad hoc between two parties Alice
and Bob. In the original paper [51], four polarization states of single photons serve as
bits. The four polarization states consist of two orthonormal bases, the rectilinear and the
diagonal basis which are conjugate, i.e., measuring a basis state of one basis in the other
basis gives each result with equal probability. One state of each basis represents the bit “0”
and the other one represents the bit “1”. The bit sequence obtained by the BB84 protocol
is random, and therefore only suited for key distribution but not for the transmission of
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meaningful messages. The reason for this is that, in the end, only a random part of the
bits originally sent by Alice contribute to the final bit sequence.

In the following, we will examine the BB84 protocol in more detail regarding the steps
to be performed as well as the basic ideas of its security.

5.2.1 The BB84 Protocol

In this section, we give a brief description of how the BB84 protocol works. Two parties,
Alice and Bob, want to use the one-time pad (or another symmetric cipher) for the
encryption of their secret communication. They share an authenticated, classical public
channel so that they know they are communicating with each other and not with Eve,
and a quantum channel, but they do not share a secret key. They agree to use the BB84
protocol for the (quantum) key distribution that works as follows:

First, Alice has to generate a secret, random bit sequence of about twice the length
they need for the message. Then she has to manipulate the polarization of the photons
she wants to send to Bob. For each photon, she chooses at random either the rectilinear
basis R (horizontal |H〉 and vertical |V 〉 polarization) or the diagonal basis D (diagonal
|D〉 and antidiagonal |A〉 polarization) where

|D〉 =
|V 〉+ |H〉√

2
and |A〉 =

|V 〉 − |H〉√
2

. (5.7)

The encoding of the random bit sequence is done by preparing the photons according to
the identifications

0 =̂ |H〉 and 1 =̂ |V 〉 (5.8)

or

0 =̂ |D〉 and 1 =̂ |A〉, (5.9)

respectively, at random. Then the photons are sent to Bob via the quantum channel.
Bob measures the polarizations of the photons arriving at his laboratory at random

either in the rectilinear or in the diagonal basis. As he chooses the basis independently
from Alice, they coincide in about one half of the choices. In these cases, Bob gets as
measurement outcome the polarization Alice prepared. For example, if Alice prepares the
state |H〉 and Bob measures in the rectilinear basis, the probabilities for his measurement
outcomes horizontal H and vertical V are

P (V |H) = 0 and P (H |H) = 1. (5.10)

In the other cases, his measurement outcome is totally random: If he measures in the
diagonal basis, he gets the outcomes diagonal D and antidiagonal A with probabilities

P (D |H) =
∣∣∣∣|D〉〈D|H〉

∣∣∣∣2 = 1/2 (5.11)

P (A |H) =
∣∣∣∣|A〉〈A|H〉

∣∣∣∣2 = 1/2, (5.12)

respectively.
After Bob converts his measurement results into bits via the identifications given in

Eq. (5.8) and Eq. (5.9), Alice and Bob have bit sequences which agree in about three
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quarters of the bits. In order to obtain the exact same bit sequence, they have to discard
those bits where they cannot be sure that they have the same without announcing the
bit itself. For approximately one half of the bits, namely the ones they used the same
basis for, they can find out whether their bits match by only announcing the basis they
used. So Bob has to tell Alice by using the authenticated classical channel which bases
he chose for the measurements, and Alice confirms the correct ones. If they used different
bases, the corresponding bit is discarded. This is why Alice has to start with about twice
as many bits as needed. So now Alice and Bob share the same secret bit sequence which
they can use as a key for the one-time pad.

The security of the BB84 protocol relies on Heisenberg’s uncertainty principle as de-
scribed by Bennett et al. [52] but also on the no-cloning theorem [47], which was first
mentioned in [53] and [54]. Due to the no-cloning theorem, the eavesdropper Eve cannot
make a (reliable) copy of a quantum state. This is because a unitary transformation U
such that

U (|χ1〉 ⊗ |a〉) = |χ1〉 ⊗ |χ1〉 (5.13)
U (|χ2〉 ⊗ |a〉) = |χ2〉 ⊗ |χ2〉, (5.14)

where |χ1〉 and |χ2〉 are two arbitrary states to copy, and |a〉 is an ancilla qubit, does
only work reliably if |χ1〉 and |χ2〉 are orthogonal [55], but for instance, |H〉 and |D〉 are
not orthogonal. Thus, these states cannot be copied reliably by Eve such that storing
the (to her unknown) state and measure it at a later time, e.g., after Alice and Bob
announced their bases, becomes impossible for her. So she would have to act during
the transmission process for example by using the intercept-resend method. But due to
Heisenberg’s uncertainty principle, she cannot simply measure the polarization, get the
correct polarization independently of the basis, and send a new photon in the correct state
to Bob. A measurement of the polarization in a basis conjugate to the one used by Alice
gives both possible measurement outcomes with the same probability; so in about one
half of the cases where she chose the conjugate basis, she will figure out the same bit as
Alice but not the correct polarization state. So Eve would get a wrong result only in half
the cases where she measured in the conjugate basis but would always send the wrong
polarization state to Bob. So she could gain, on average, information on three quarters
of the secret bits, namely those where she chose the correct basis, and one half of the bits
where she chose the conjugate basis. However, due to her measurements in the conjugate
basis, the polarization of the photon sent to Bob is according to her measurement outcome
in the conjugate basis. This can lead to the detection of Eve if Alice and Bob measure in
the same basis but Eve chose the conjugate one. Then the probability that the results of
Alice and Bob do not match is 1/4 (with probability 1/2, Eve chooses the conjugate basis,
and with probability 1/2 Bob measures “0” or “1”) although they used the same basis. Alice
and Bob can take advantage of this fact by comparing some of their bits publicly and
checking whether Eve caused disagreements by eavesdropping.

To compare some bits of their shared key to check for an eavesdropper, it is useful
for Alice to generate a bit sequence which is even longer than twice the length needed.
So the next step after the comparison of the basis would be to compare some randomly
chosen bits of the key (about a third of the remaining ones [51]) using the classical
channel. These bits have to be discarded as they are publicly announced. In the ideal
case, all these compared bits should be the same. In case they are not equal, someone
was eavesdropping on the quantum channel during the transmission. An example is given
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in Table 5.1 without eavesdropping and in Table 5.2 with Eve using the intercept-resend
method for eavesdropping.

In the realistic, non-ideal case, the polarization can change due to interaction of the
photons with the environment or non-perfect alignment of the devices leading to bit
flip errors, or photons are not detected at all by Bob due to losses in the channel or
imperfect detectors. Usually, all disturbances (also those due to the environment) are
ascribed to a potential eavesdropper, making him only appear more powerful such that
he is not underestimated. Alice and Bob then have to estimate at which error rate it is
still secure to use the key. For instance, if the eavesdropper was only able to gain very
little information of the key, techniques such as error correction and privacy amplification,
which was invented by Bennett, Brassard, and Robert in 1988 [56], are still sufficient [47].
Otherwise they have to abort the protocol.

Table 5.1: Example of the BB84 quantum key distribution protocol without eavesdropping
in the ideal case.
Alice’s bit 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1
Alice’s basis R D D R D R R D R D D D R D R R D R
Alice’s state H A A H A H V D H D A D V A V H D V
Bob’s basis R R D R D D D D R R R D R R R D R D
Bob’s result H V A H A D A D H V V D V H V A H D
same basis X X X X X X X X X

key 0 1 0 1 0 0 0 1 1

Table 5.2: Example of the BB84 quantum key distribution protocol with Eve eavesdrop-
ping on the channel and using the intercept-resend method. As the third compared bit is
incorrect in the ideal case, Alice and Bob can conclude that Eve was eavesdropping.

Alice’s bit 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1
Alice’s basis R D D R D R R D R D D D R D R R D R
Alice’s state H A A H A H V D H D A D V A V H D V
Eve’s basis D D R R R D R D D R D R R D R D R R
Eve’s state D A H H V A V D A V A H V A V D H V
Bob’s basis R R D R D D D D R R R D R R R D R D
Bob’s result H V A H D A A D H V V A V H V D H D
same basis X X X X X X X X X

bits announced 0 0 1
bits coincide X X 7

5.2.2 The Gap Between Theory and Implementation

In theory, the BB84 protocol has been rigorously proven secure [57] after a few incomplete
attempts [52] [58] as mentioned by Brassard [59]. However, in reality much depends on
the actual experimental implementation. The first experiment performed by Bennett,
Brassard and three of their students was very noisy, and the apparatus made different
sounds when generating a “0” or a “1” such that an eavesdropper could easily get the key
by only listening to the experiment [59]. This particular problem has been solved in the
meantime, but there are still lots of other difficulties. A severe one is that sending always
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only one photon is complicated, and photon detectors do not have a high single photon
detection efficiency. Usually, weak laser pulses with an average number of photons per
pulse below 1 are used. Most of these pulses are then vacuum pulses as they contain no
photon at all. Nevertheless, it is impossible to prevent pulses from containing more than
one photon. This led to the development of the so-called photon-number splitting attack
[60] [61] [62]. To regain the security even when using (weak) laser pulses and to improve
the transmission rate and thus the maximal distance, the decoy-state scheme has been
invented [63] [64]. However, there are still many possible attempts such as for example the
time-shift attack [65] [66] [67], the trojan horse attack [68], or the detector blinding attack
[69] [70] to manipulate or exploit vulnerabilities of the devices used in the implementation
of the quantum key distribution protocol. Summaries of possible and performed attacks
are also given in Refs. [71], [72], and [73]. But although often solutions to the security
leaks for the published attacks are immediately presented by the groups themselves or by
follow up work of other groups, the problem is still that in this way the implementations
can only be protected against publicly known attacks [73].

Another idea of dealing with the threat of imperfect implementations is to treat the
entire setup as a black box which may even be built by an untrusted third party or Eve
herself, i.e., making the protocol independent of the functioning of the utilized devices
[74] [75] [76] [77]. This is named device-independent quantum key distribution as Alice
and Bob do not have to know how their devices work.

Unfortunately, device-independent quantum key distribution also has some serious
problems such as, for example, the low secret key rate making it unsuited for large dis-
tances [73] [78], and the proposed Bell test has never been successfully realized [73]. Thus,
no such device-independent quantum key distribution has been successfully performed.
However, since most attacks against conventional quantum key distribution implementa-
tions are against the detectors, the measurement devices seem to be the most vulnerable
devices. This led to the invention of measurement-device-independent quantum key dis-
tribution by Lo, Curty, and Qi [78], and independently by Braunstein and Pirandola
[79], where only the measurement devices are considered as black boxes but the sources
still have to be characterized. The characterization of the sources without information
escaping to Eve is considered achievable [78].

In the measurement-device-independent setup, Alice and Bob send a part of their
entangled states [79] [73] or one of the polarization states |H〉, |V 〉, |D〉 or |A〉 [78] to an
untrusted third party Charlie, or even Eve, who performs a Bell-state measurement, i.e.,
measures only the parity of Alice’s and Bob’s bits, and announces the outcomes publicly.
Hence, Charlie and Eve cannot gain any information about the actual bits, and thus
Charlie’s detectors do not need to be protected against Eve [73]. By comparing a random
subset of their obtained bits, Alice and Bob can test Charlie’s honesty. For this kind of
quantum key distribution, successful experiments have been reported both for time-bin
encoded qubits [80] [81] and for polarization encoded qubits [82] [83].

Another possible advantage of measurement-device-independent quantum key distri-
bution is that Charlie could operate as some kind of (untrusted) server, connecting many
clients who would then only have to possess the sources but do not need to own the
detection devices each [73].

In the following, we investigate a variation of measurement-device-independent imple-
mentations based on single-photon Bell state measurements (SBSM) [84] [85] [86], which
is also called detector-device-independent quantum key distribution. The SBSM scheme
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uses two degrees of freedom of a single photon such as the polarization and the phase,
and therefore two qubits can be encoded using a single photon [84]. The advantage is
that no interference of two photons coming from two different sources is needed, and
thus the key rate increases compared to other measurement-device independent quantum
key distribution implementations [84] [87]. For detector-device-independent quantum key
distribution, the measurement devices are uncharacterized but all elements of the setup
have to be known at least to Bob who performs the SBSM. So here the black box has a
slightly different meaning: Bob has to know which optical elements are contained in the
setup, but he does not need to know how they work in detail [85]. Otherwise, since Bob’s
laboratory has to be accessible to Alice’s photons, Eve could send in her own pulses and
if the SBSM was completely untrusted, this would provide an opportunity for attacks
[88]. However, taking the necessary precautions against such attacks, detector-device in-
dependent quantum key distribution may be a compromise as it seems to be more viable
than device-independent or measurement-device-independent quantum key distribution.
Moreover, it is still secure against a large class of attacks.

In the following, we will show that we can simulate an experiment of this kind with the
discrete-event simulation method which is non-quantum and strictly satisfies Einstein’s
criterion of locality. That means we can produce the same correlations as the Bell-state
measurement without using Bell states. The implementation we consider in the next
section uses path and time-bin encoding and a relative phase as degrees of freedom [87].

5.2.3 Discrete-Event Simulation of a Quantum Key Distribution
Protocol

We specifically discuss the detector-device independent implementation of the quantum
key distribution protocol based on a SBSM presented in Ref. [87]. The two qubits are
encoded in two degrees of freedom of a photon, namely the phase and the path and time-
bin in this case. The BB84 protocol [51] and Ekert’s protocol [89] have been discussed
in general by means of the discrete-event simulation in Ref. [11] using only the polariza-
tion degree of freedom of the photons such that one photon represents only one qubit.
Moreover, the simulations differ in that the simulation method applied in Ref. [11] comes
without a learning machine, but makes (partially) use of postselection.

First, we examine how the experiment works in theory, and then we simulate it by
means of the discrete-event simulation method and compare the results. This type of ex-
periment is interesting from the point of view of discrete-event simulations as the security
of detector-device independent quantum key distribution relies on the input and output
statistics of the measurement [85]. They are attributed to Bell states that exhibit entan-
glement in quantum theory, but we will produce the same correlations with a simulation
where no Bell states appear.

Theoretical Description of the Experiment

The setup of the experiment is shown in Fig. 5.1. The protocol works in detail as follows:
Alice chooses a phase α ∈ {0, π/2, π, 3π/2} and sends a photon into her interferometer.
After entering Alice’s unbalanced Mach-Zehnder interferometer through the first beam
splitter at t = 0, the photon is in a superposition of taking the short path (|s〉) and the
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long path (|l〉) such that its state |ϕ1〉 is given by

|ϕ1〉 =
1√
2

(|s〉+ i|l〉)⊗ |t = 0〉, (5.15)

where we base our notation on the one used in [87]. The part in the long arm of the
Mach-Zehnder interferometer then collects the phase shift α chosen by Alice. The photon
takes the time ts for the short arm of the interferometer and the time ts + td for the long
arm where we choose w.l.o.g. the time delay td such that e2πiftd = 1 (otherwise we would
end up with a constant shift of α and β). So immediately before the second beam splitter,
the state of the photon is given by

|ϕ2〉 =
e2πifts

√
2

(
|s〉|ts〉+ ieiα|l〉|ts + td〉

)
. (5.16)

Alice

Bob

D
1

D
2

α β

Figure 5.1: Setup of the experiment performing the SBSM quantum key distribution
proposed in Ref. [87]. White boxes with a diagonal line represent beam splitters, blue
plates with α and β denote phase shifters with phase shift α or β, respectively. Alice’s and
Bob’s laboratories are marked by the cyan dashed boxes. The gray dashed line leaving
Alice’s second beam splitter denotes discarded photons leaving the setup. The yellow line
encircles the part of Bob’s apparatus which he can treat as a black box. Within this part,
a switch which delays these photons that took the short arm in Alice’s interferometer is
contained. The half circles represent the detectors for the Bell-state measurement.

Due to the difference in the path and time-bin degree of freedom, there is no interference
at Alice’s second beam splitter and we get for the state after the beam splitter

|ϕ3〉 =
e2πifts

2

((
|c〉+ i|d〉

)
|ts〉+ ieiα

(
|d〉+ i|c〉

)
|ts + td〉

)
, (5.17)

where |c〉 and |d〉 denote the output states of the beam splitter transformation

TA2 =
1√
2

(
|c〉+ i|d〉

)
〈s|+ 1√

2

(
i|c〉+ |d〉

)
〈l|. (5.18)

The state |c〉 corresponds to the output which is still used, and |d〉 denotes the state
leaving at the output which is discarded. As we consider in the following only photons in
the state |c〉, the state describing the photons which leave Alice’s laboratory is given by

|ϕ4〉 =
e2πifts

2
|c〉
(
|ts〉 − eiα|ts + td〉

)
. (5.19)
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The photon leaves Alice’s laboratory and travels to Bob’s laboratory which takes a
time tt and therefore adds a global phase to the state. At Bob’s first beam splitter, the
photon’s state is transformed by

TB1 =
1√
2

(
|S〉+ i|L〉

)
〈c|+ 1√

2

(
i|S〉+ |L〉

)
〈e|, (5.20)

where |e〉 denotes the empty input of the beam splitter, |S〉 represents the short path,
and |L〉 denotes the long path of Bob’s interferometer. The resulting state is given by

|ϕ5〉 =
e2πif(ts+tt)

2
√

2

(
(|S〉+ i|L〉) |ts + tt〉 − eiα (|S〉+ i|L〉) |ts + td + tt〉

)
. (5.21)

Bob chooses his phase shift β ∈ {0, π/2, π, 3π/2} for the long arm of the interferometer.
There is a switch in the short arm of the interferometer which delays only those photons
arriving at time ts + tt by a time 2td. So the state we have at Bob’s second beam splitter
is represented by

|ϕ6〉 =
e2πif(2ts+tt)

2
√

2

(
|S〉|t1〉+ ieiβ|L〉|t0〉 − eiα|S〉|t0〉 − iei(α+β)|L〉|t1〉

)
(5.22)

=
e2πif(2ts+tt)

2
√

2

( (
|S〉 − iei(α+β)|L〉

)
|t1〉+

(
ieiβ|L〉 − eiα|S〉

)
|t0〉
)
, (5.23)

where t0 = 2ts + td + tt and t1 = 2ts + 2td + tt. Finally, the photons have to pass the last
beam splitter, whose transformation is given by

TB2 =
1√
2

(
|1〉+ i|2〉

)
〈S|+ 1√

2

(
i|1〉+ |2〉

)
〈L|, (5.24)

where |1〉 denotes the path to detector D1, and |2〉 denotes the path to detector D2. The
state of the photons is then given by

|ϕ7〉 =
e2πif(2ts+tt)

4

(
(|1〉+ i|2〉) |t1〉 − iei(α+β) (|2〉+ i|1〉) |t1〉

+ ieiβ (|2〉+ i|1〉) |t0〉 − eiα (|1〉+ i|2〉) |t0〉
)

(5.25)

=
e2πif(2ts+tt)

4

( (
1 + ei(α+β)

)
|1〉|t1〉+ i

(
1− ei(α+β)

)
|2〉|t1〉

−
(
eiα + eiβ

)
|1〉|t0〉 − i

(
eiα − eiβ

)
|2〉|t0〉

)
. (5.26)

Bob can now measure one of the four cases

• detector 1 clicks at time t0 with probability P (D1, t0) = (1 + cos(α− β))/8 (5.27)
• detector 2 clicks at time t0 with probability P (D2, t0) = (1− cos(α− β))/8 (5.28)
• detector 1 clicks at time t1 with probability P (D1, t1) = (1 + cos(α + β))/8 (5.29)
• detector 2 clicks at time t1 with probability P (D2, t1) = (1− cos(α + β))/8. (5.30)

With probability 1/2, the photon was already discarded in Alice’s laboratory. The cases to
measure the photon at time t0 or at time t1 are equally likely and independent of the phase
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shifts α and β as P (t0) = P (D1, t0) + P (D2, t0) = 1/4 = P (D1, t1) + P (D2, t1) = P (t1).
So whether a detector clicks at time t0 or at time t1 cannot be controlled by Alice and
Bob. The phase shifts α and β determine whether the two states which take a time t0,
namely the photon took the long arm and then the short arm (|lS〉) or vice versa (|sL〉),
interfere constructively at detector 1 and destructively at detector 2 (α = β) or vice versa
(|α−β| = π). A similar rule, but with different dependence on α and β, applies for states
which take a time t1, namely the photon taking twice the long arm (|lL〉) or twice the
short arm with the extra delay (|sS〉). A detector click at time t0 or time t1 indicates
whether the state collapsed to a state where |lS〉 and |sL〉 interfere or to a state where |lL〉
and |sS〉 interfere. The number of the detector that clicks gives information about the
relative phase such that the four possible combinations of detector numbers and detection
times can be assigned to a measurement of the four states

|Φ+〉 =
|sS〉+ |lL〉√

2
(5.31)

|Φ−〉 =
|sS〉 − |lL〉√

2
(5.32)

|Ψ+〉 =
|lS〉+ |sL〉√

2
(5.33)

|Ψ−〉 =
|lS〉 − |sL〉√

2
, (5.34)

which are the maximally entangled states, also called Bell states, for the state

|ψ〉 =
1

2

(
|sS〉+ ei(α+β)|lL〉+ eiα|lS〉+ eiβ|sL〉

)
. (5.35)

The correspondence can be made since the probabilities to measure a state |Φ±〉 or |Ψ±〉
are

P (Φ+ |α, β) =
∣∣∣∣|Φ+〉〈Φ+|ψ〉

∣∣∣∣2 =
1 + cos(α + β)

4
(5.36)

P (Φ− |α, β) =
∣∣∣∣|Φ−〉〈Φ−|ψ〉

∣∣∣∣2 =
1− cos(α + β)

4
(5.37)

P (Ψ+ |α, β) =
∣∣∣∣|Ψ+〉〈Ψ+|ψ〉

∣∣∣∣2 =
1 + cos(α− β)

4
(5.38)

P (Ψ− |α, β) =
∣∣∣∣|Ψ−〉〈Ψ−|ψ〉

∣∣∣∣2 =
1− cos(α− β)

4
, (5.39)

which have the same dependence on α and β as the four possible measurement outcomes
of Bob (Eqs. (5.27) - (5.30)). The only difference is the factor one half because |ϕ〉 is not
normalized due to the rejection of the photon with probability 1/2 after the second beam
splitter in Alice’s laboratory. The correspondence between the measurement outcome and
the Bell states is given in Table 5.3.

Since Alice and Bob can manipulate the relative phases of |lS〉 and |sL〉, and of |sS〉
and |lL〉 by choosing their phase shifts α and β, they can affect the probabilities of the
measurement outcomes. This can be exploited such that Bob can determine Alice’s phase
shift α through his choice of β if α and β are either both chosen from the set I := {0, π}
or both chosen from the set B := {π/2, 3π/2}. For example, say Bob chooses β = π/2.
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If Alice also chooses α = π/2, the probabilities for the detector clicks are then

P (D1, t0|α = β = π/2) = P (D2, t1|α = β = π/2) = 1/4 (5.40)
and P (D2, t0|α = β = π/2) = P (D1, t1|α = β = π/2) = 0 (5.41)

or if Alice chooses α = 3π/2,

P (D1, t0|α = 3π/2, β = π/2) = P (D2, t1|α = 3π/2, β = π/2) = 0 (5.42)
and P (D2, t0|α = 3π/2, β = π/2) = P (D1, t1|α = 3π/2, β = π/2) = 1/4. (5.43)

However, if Alice chooses α = 0 or α = π, the probabilities for the different detection
times and detector numbers are all the same:

P (D1, t0|α = 0, β = π/2) = P (D1, t1|α = 0, β = π/2) = 1/8 (5.44)
P (D2, t0|α = 0, β = π/2) = P (D2, t1|α = 0, β = π/2) = 1/8 (5.45)
P (D1, t0|α = π, β = π/2) = P (D1, t1|α = π, β = π/2) = 1/8 (5.46)
P (D2, t0|α = π, β = π/2) = P (D2, t1|α = π, β = π/2) = 1/8. (5.47)

If Bob measures the detector click at time t0 from detector D1 and he assumes that Alice
also chose α from the set B, he estimates that α = π/2.

Table 5.3: Relation between detection time and detector number and the corresponding
Bell state. The detection time determines whether the state collapses to |Ψ±〉 or |Φ±〉.
This outcome is random. Which detector clicks is predetermined by the relative phase of
the two interfering states. Detector D1 clicks if the relative phase is zero, and detector
D2 clicks if the relative phase is π.

Time Detector Bell state

t0
D1 |Ψ+〉
D2 |Ψ−〉

t1
D1 |Φ+〉
D2 |Φ−〉

Table 5.4 shows the possible measurement outcomes for all combinations of possible
values for α and β. All combinations where α and β are chosen from the same set lead
to an unambiguous relation between the detection time and detector number and the
phase shift α. In the cases where Alice and Bob choose α and β from different sets, Bob’s
estimate based on the assumption that the phase shifts are chosen from the same set is
correct only with probability 1/2, so these cases have to be discarded as the measurement
outcome is uncorrelated with the phases α and β.

For this purpose, in the next step Alice and Bob have to communicate over an authen-
ticated, classical channel whether they chose the phase shifts α and β from the set I or
B. In those cases where they chose α and β from the same set, Bob can determine Alice’s
phase shift α.

Using, for example, the convention that α = 0 or α = π/2 denote the bit “0”, and that
α = π or α = 3π/2 denote the bit “1”, Alice and Bob can distill a shared secret key as
Bob is able to reconstruct Alice’s initial bit. Which bit he has to choose depending on
the measurement outcome and his phase shift β is shown in Table 5.5.
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Table 5.4: Possible detection outcomes of the Bell-state measurement depending on the
phase shifts α and β chosen by Alice and Bob, respectively. The possible results in a field
are equally likely. This table is also given in Ref. [87].

α\β 0 π π/2 3π/2

0 D1 at t0 : |Ψ+〉 D2 at t0 : |Ψ−〉 all possible all possible
D1 at t1 : |Φ+〉 D2 at t1 : |Φ−〉

π
D2 at t0 : |Ψ−〉 D1 at t0 : |Ψ+〉 all possible all possible
D2 at t1 : |Φ−〉 D1 at t1 : |Φ+〉

π/2 all possible all possible D1 at t0 : |Ψ+〉 D2 at t0 : |Ψ−〉
D2 at t1 : |Φ−〉 D1 at t1 : |Φ+〉

3π/2 all possible all possible D2 at t0 : |Ψ−〉 D1 at t0 : |Ψ+〉
D1 at t1 : |Φ+〉 D2 at t1 : |Φ−〉

Table 5.5: Detector number and detection time to bit conversion. Depending on the
detector number, detection time, and the phase shift β, Alice’s initial bit can be guessed
by Bob according to this table. If α and β are from the same set, the bit distilled by Bob
coincides with Alice’s bit.

Detector number and time Bob’s phase β Bit distilled by Bob

D1 at t0
0 or π/2 0
π or 3π/2 1

D2 at t0
0 or π/2 1
π or 3π/2 0

D1 at t1
0 or 3π/2 0
π or π/2 1

D2 at t1
0 or 3π/2 1
π or π/2 0

In the following, we will discuss the discrete-event simulation of this protocol and see
how we have to use the time to achieve the desired results.

The Simulation

Before we start with the complete protocol discussed in the previous section, we have a
look at the normalized detector counts depending on the phase shifts α and β. In order
to do this, we scan β from 0◦ to 360◦ in steps of 5◦ for α = 0◦, α = 45◦, α = 90◦,
and α = 135◦. This will serve as a check whether the simulation reproduces the same
dependence as the Bell-state measurement.

For the discrete-event simulation of the experiment introduced in the previous section,
we used a source with fluctuating frequency, i.e., the photons get a frequency f + ν where
f is fixed and ν is a random number distributed as described by Eq. (2.2) in section 2.3.
The parameters of the source are chosen to be f = 193414 GHz such that c/λ ≈ f , where c
is the speed of light and λ = 1550 nm as used in the experiment [87], and σ = 5 GHz. We
have to use the frequency fluctuating source here as time is relevant in the experiment but
only the phase is stored in the message. To avoid that we end up with only a fixed phase
shift e2πiftd , where td is the time delay a photon accumulates due to the difference in the
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path lengths between the short arm and the long arm, we have to vary the frequency f
slightly such that the time delay really causes decoherence at the beam splitters which are
linear elements. We can then use the simple beam splitter without learning machine. The
time delay is chosen to be td = 1 ns. For the switch, we can use an ideal one which adds
a time delay 2td only to those photons that took the short arm in Alice’s interferometer.
This is not a problem in the simulation, as we can add a time tag to the photon in addition
to the message, telling us at the switch whether the delay has to be added or not. The
phase shifts of α and β are implemented as described in section 2.4.

At the detectors, the photons arrive either at time t0 or at time t1, so photons that
arrive at the same time can interfere here, also for the fluctuating source as detectors are
nonlinear elements, and thus the detection of photons depends on previous ones even with
different frequencies [90]. Therefore, we have to use the advanced detectors introduced in
section 2.6 which are capable of producing interference effects. As we need four different
interference patterns (two at time t0 and two at time t1) but we have only two detectors,
we have to make the detectors able to store two patterns. This means that a detector has
to store four complex numbers for the learning machine, namely Y t0

v , Y t0
h , Y t1

v , and Y t1
h ,

such that the time degree of freedom is explicitly taken into account. The parameters of
the detectors were chosen to be γ = 0.98 and η = 0.153 as in the experiment. A test of
the effective efficiency of the simulated detectors resulted in ηeff = 0.1524.

For each setting of α and β, N = 1 000 000 events are generated where the polarization
and the initial phase are random but fixed for each setting. The source emits Nν = 200
photons with a constant fluctuation ν of the frequency until a new random ν is generated.
The photons are sent through the setup which is visualized in Fig. 5.1. Photons leaving
the second beam splitter through output port 1 are discarded. Those photons arriving at
one of the detectors affect the internal state of the learning machine and may produce a
click. For plotting, the detector counts Ni, i ∈ {(D1, t0), (D1, t1), (D2, t0), (D2, t1)}, are
normalized by the sum of all detector counts

∑
iNi instead of the total number of events

N .
The results regarding the dependence of the normalized detector counts on the phase

shifts α and β are shown in Fig. 5.2. The relations between the detectors’ clicks are the
same for α = 0 (Fig. 5.2a) and α = π (Fig. 5.2c) but shifted by π, and for α = π/2
(Fig. 5.2b) and α = 3π/2 (Fig. 5.2d) also shifted by π. This corresponds to the upper
left and lower right blocks in Table 5.4. The results coincide with the experimental data
given in Ref. [84], where the same plots are made for a slightly different protocol which
utilizes the polarization instead of the time for the second degree of freedom. However,
we obtain the same relations between the four detection outcomes which also agree with
the results from the previous section where we discussed the protocol analytically. So we
have verified that our simulation gives the same results for the dependence on the phase
shifts α and β as the experiment and the theory.

Now that we have seen that the measurement in the simulation works as it should, we
can investigate the part of the protocol which deals with the distribution of the secret
key. If we want a secret key length of about M/2 bits, we have to generate M random
settings for the phase shifts α and β because in about one half of the random settings,
α and β are not from the same set I or B, and Alice’s bit cannot be determined with
certainty. As the phase shifts α and β should be chosen at random in this part of the
simulation, we select two uniformly distributed random numbers R1, R2 ∈ {0, 1, 2, 3} such
that α = R1 · π/2, and β = R2 · π/2. For each setting of α and β, we generate n events
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Figure 5.2: Results for the normalized detector counts Ni/
∑

j Nj depending on the phase
shift β chosen by Bob for Alice’s phase shift α being (a) α = 0 (b) α = π/2 (c) α = π
(d) α = 3π/2. If Alice and Bob choose their phase shifts from the same set I = {0, π}
or B = {π/2, 3π/2}, Bob can determine Alice’s choice as in these cases his outcome is
unambiguous. For each setting of α and β, the number of generated events was N =
1 000 000.

such that we have a total number of M · n events with M blocks of n successive events
with the same settings for α and β. This is necessary as with the learning machine of the
detectors we can achieve the correct results on average, but we need a certain number of
events to train the learning machine.

The transmissions and measurement work as discussed in the previous part, but now
the detector number and detection time have to be converted into “0” or “1” depending on
the phase shift β. The conversion is done according to Table 5.5 for each detected event.
In each of the M blocks with fixed settings for α and β, a bit_counter is increased by
one whenever a measurement outcome and phase setting of Bob indicate that Alice’s bit
is 1. Divided by all detected events in this block, Bob achieves an average bit between
0 and 1. In the cases where the bit can be determined with certainty, i.e., α and β are
in the same set I or B, the average bit should be close to 0 or 1. Otherwise, the average
bit is around 0.5. Still, the average bit has to be rounded to 0 or 1, as in the original
protocol Bob can only get the outcome 0 or 1. The next step in the protocol is that

60



5.2 Quantum Key Distribution

Alice and Bob communicate the sets I and B of their chosen phases α and β, so we check
whether |R1 − R2| mod 2 = 0. If the random numbers R1 and R2 satisfy this condition,
the bit is included in the key, otherwise the bit is discarded. Additionally, we also check
whether the bit distilled by Bob in this procedure coincides with the bit Alice started
with. Excerpts of the results for n = 1000 and n = 5000 are given in Table 5.6 and Table
5.7, respectively.

Table 5.6: Summarized protocol and results including the secret key for n = 1000. From
M = 100 generated settings, only an excerpt of 20 settings is shown, including from left
to right: the initial bit of Alice, the phase shifts α of Alice, and β of Bob, the average bit
and rounded bit distilled by Bob, the outcome of the test whether α and β are from the
same set, and if yes, the check of the correctness of the distilled bit, and finally the bit
used for the key. All bits that could be determined with certainty from the theoretical
point of view are correctly determined in this excerpt. There is one bit flip error in the
key generated from the 100 settings (not shown in this excerpt). Nevertheless, even in this
excerpt some average bits are close to 0.5 although Bob should be able to determine Alice’s
bit with certainty. The key gained from this excerpt is 15 bits long: 010011100101110

Alice’s bit α β average bit rounded bit same set correct key
1 3π/2 0 0.612676 1 no
0 π/2 π 0.406504 0 no
0 0 0 0.280822 0 yes yes 0
1 3π/2 π/2 0.663866 1 yes yes 1
0 0 0 0.347458 0 yes yes 0
0 0 0 0.362903 0 yes yes 0
1 3π/2 π 0.609091 1 no
1 π π 0.723077 1 yes yes 1
1 3π/2 π/2 0.54023 1 yes yes 1
1 π π 0.734694 1 yes yes 1
0 π/2 3π/2 0.415842 0 yes yes 0
0 π/2 3π/2 0.411215 0 yes yes 0
1 π π 0.680272 1 yes yes 1
0 π/2 π/2 0.424528 0 yes yes 0
0 π/2 0 0.423529 0 no
1 π π 0.545455 1 yes yes 1
1 π π 0.538462 1 yes yes 1
1 3π/2 3π/2 0.614583 1 yes yes 1
0 0 π/2 0.46875 0 no
0 π/2 3π/2 0.395833 0 yes yes 0

For increasing n, we can achieve better results in the sense that the average bits become
more precise: for n = 5000 the average bits always tend clearly to the correct bit while
for n = 1000 the correct bit does not always emerge clearly from the averaged bit. In the
data corresponding to the excerpt in Table 5.6, this resulted in one error per M = 100
settings. Nevertheless, the results are all correctly rounded for n ≥ 2000 (results for
n = 2000 not shown). So we need n to be in the order of 103 events to get the correct,
averaged results per setting. One may say that this is not a satisfying result; however,
in the real experiment better key generation rates were not achieved either [87]. Only in
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the extrapolation to a transmission distance of 0 km, the key generation rate approaches
approximately 6× 10−2/ pulse.

Table 5.7: Summarized protocol and results including the secret key for n = 5000. From
M = 100 generated settings, only an excerpt of 20 settings is shown. The same quantities
as in Table 5.6 are given. All bits that could be determined with certainty from the
theoretical point of view are correctly determined in this excerpt as well as in the whole
dataset. For n = 5000, the results are more clearly than for n = 1000. The key gained
from this excerpt is 11 bits long: 00010110011

Alice’s bit α β average bit rounded bit same set correct key
1 3π/2 0 0.56213 1 no
0 0 π 0.236111 0 yes yes 0
1 3π/2 0 0.506383 1 no
0 0 0 0.14881 0 yes yes 0
0 π/2 3π/2 0.129032 0 yes yes 0
1 3π/2 π/2 0.800676 1 yes yes 1
1 π π/2 0.512987 1 no
0 0 0 0.144118 0 yes yes 0
1 π π/2 0.508021 1 no
1 π π/2 0.464072 0 no
1 π 0 0.831776 1 yes yes 1
1 3π/2 π/2 0.845426 1 yes yes 1
0 π/2 π/2 0.117834 0 yes yes 0
1 π 3π/2 0.513158 1 no
1 3π/2 π 0.482759 0 no
0 0 π 0.166667 0 yes yes 0
1 π 0 0.85489 1 yes yes 1
0 0 π/2 0.452107 0 no
1 3π/2 0 0.530675 1 no
1 π π 0.792 1 yes yes 1

Conclusion

We have demonstrated that it is possible to simulate a quantum key distribution protocol
with a discrete-event simulation. The simulated protocol is a detector-device independent
version of the BB84 protocol employing a Bell-state measurement. The important fact
about this demonstration is that the discrete-event simulation is capable of reproducing
the correlations attributed to Bell states, which are the maximally entangled states, within
quantum theory. But the discrete-event simulation makes no use of quantum theory, not
to mention entanglement. With the discrete-event simulation, we are able to achieve a
key rate of ≈ 10−3/ event which lies in the range of key rates achievable in the experiment
(10−2 to 10−7/ pulse). Although the discrete-event simulation method strictly satisfies
Einstein’s criterion of locality, we can obtain the same correlations that are attributed to
Bell states within quantum theory.
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6 Franson-Interferometer

In 1989, Franson proposed an experimental setup consisting of two unbalanced Mach-
Zehnder interferometers to measure the fourth-order interference between photon-pairs
emitted by an atom [91]. The atom is supposed to have three energy levels E3 > E2 > E1

such that the exited state with energy E3 is metastable with a relatively long lifetime
Tl, the state with energy E2 is unstable with a very short lifetime Ts, and the state with
energy E1 is either the ground state or a stable state with a very long lifetime. Hence,
when an excited atom emits a photon with energy E3 − E2, it almost immediately emits
a second photon with energy E2−E1. Due to the short lifetime Ts, the uncertainty in the
frequencies of both photons σν ∼ 1/Ts is large compared to the uncertainty in the sum of the
frequencies ∆f ∼ 1/Tl [91]. Choosing the time delay ∆T in the unbalanced Mach-Zehnder
interferometer such that Tl � ∆T � Ts, the cases of early emitted photons taking
both the long paths in the interferometers and of late emitted photons taking both the
short paths in the interferometers become indistinguishable such that the corresponding
probability amplitudes can interfere [91]. For that reason, photon pairs exhibiting this
feature are called energy-time entangled within quantum theory. Additionally, choosing
∆T � Ts allows for identification of the cases where one of the photons takes the long
path and the other one the short path. They can then be removed via postselection by
setting the coincidence window τ � ∆T since the photons taking two paths of different
lengths also differ in the arrival time by approximately ∆T ± Ts ≈ ∆T � τ .

After Franson’s proposal, experiments with the aim of measuring the fourth-order
interferences have been performed where the photon-pairs usually originate from down-
conversion in nonlinear crystals. The first experiments successfully measuring the fourth-
order interferences still attained visibilities V below V = 0.5 [92] [93] [94], but later also
visibilities exceeding V = 0.5 were measured [95]. More recent experiments based on the
Franson-interferometer are often related to quantum key distribution [96] [97] [98].

We aim at obtaining the fourth-order interference of this kind of experiment by means of
a discrete-event simulation as energy-time entangled systems have not yet been examined
in this framework. But before we start with the simulation, we investigate the theoretical
outcomes of classical wave theory and quantum mechanics to have qualitative results to
compare with.

6.1 Classical and Quantum Theoretical Correlations

The setup of the Franson-interferometer is shown in Fig. 6.1. A source emits pairs of
photons with frequencies f+ and f− within a small time window, where the sum of the
frequencies f+ + f− has a very small uncertainty compared to the frequencies f+ and f−
themselves. Inspired by Ref. [99], we will assume in the calculation that f+ = f0 + ν and
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6 Franson-Interferometer

f− = f0 − ν where ν is a random number taken from the distribution

p(ν) =
1√
2πσ

e−ν
2/(2σ2), (6.1)

with σ being the uncertainty in the frequencies f+ and f−. As the uncertainty in f+ and
f− is quite large, we do not expect to see any single-photon interference.

After the generation, the photons travel in opposite directions towards the unbalanced
Mach-Zehnder interferometers, which contain phase shifters that add a phase ϕA or ϕB,
respectively. The detectors on the right are labeled by DA+ and DA−, and the detectors
on the left are labeled by DB+ and DB−. In the calculations of averages, the detectors
labeled with a minus sign will count as −1 detection events and detectors labeled with a
plus sign will count as +1 detection events.

D
B+

D
B−

D
A+

D
A−

ϕ
B

ϕ
A

S

Figure 6.1: Setup of the Franson-Interferometer experiment. The circle with the S denotes
the two-photon source emitting two photons of varying frequencies f+ and f− such that
f+ + f− = 2f0 which is fixed. The white boxes with a diagonal line represent beam
splitters. Blue boxes with label ϕA or ϕB are phase shifters with phase shift ϕA or ϕB,
respectively. Half circles with a wiggly line denote photon detectors and are labeled by
DB+, DB−, DA+, and DA−.

6.1.1 Classical Description

Using the classical approach, for simplicity with plain waves, we have to add the ampli-
tudes corresponding to the possible paths at the level of the detectors. Beginning with
the same initial amplitude A0 > 0 but different phases ψA and ψB for the right and left
traveling waves, respectively, we get the amplitudes A+ and A− (B+ and B−) at the
detectors DA+ and DA− (DB+ and DB−):

A+ = A0e
iψA
(
e2πif−t0 − e2πif−(t0+∆T )+iϕA

)
= A0e

iψA+2πif−t0
(

1− e2πif−∆T+iϕA
)

(6.2)

A− = A0e
iψA
(
ie2πif−t0 + ie2πif−(t0+∆T )+iϕA

)
= A0ie

iψA+2πif−t0
(

1 + e2πif−∆T+iϕA
)

(6.3)

B+ = A0e
iψB
(
ie2πif+t0 + ie2πif+(t0+∆T )+iϕB

)
= A0ie

iψB+2πif+t0
(

1 + e2πif+∆T+iϕB
)

(6.4)

B− = A0e
iψB
(
e2πif+t0 − e2πif+(t0+∆T )+iϕB

)
= A0e

iψB+2πif+t0
(

1− e2πif+∆T+iϕB
)
. (6.5)

The intensities are computed from the modulus squared of the amplitudes given in Eqs.
(6.2) - (6.5). For obtaining the correlation between two detectors, we have to multiply
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6.1 Classical and Quantum Theoretical Correlations

the intensities of these two detectors, which gives for all possible combinations:

I++ = |A+|2|B+|2 = 4A4
0

(
1− cos

(
2πf−∆T + ϕA

)) (
1 + cos

(
2πf+∆T + ϕB

))

= 2A4
0

(
2− 2 cos

(
2πf−∆T + ϕA

)
+ 2 cos

(
2πf+∆T + ϕB

)

− cos (−4πν∆T + ϕA − ϕB)− cos (ϕ0 + ϕA + ϕB)) (6.6)
I−− = |A−|2|B−|2 = 4A4

0

(
1 + cos

(
2πf−∆T + ϕA

)) (
1− cos

(
2πf+∆T + ϕB

))

= 2A4
0

(
2 + 2 cos

(
2πf−∆T + ϕA

)
− 2 cos

(
2πf+∆T + ϕB

)

− cos (−4πν∆T + ϕA − ϕB)− cos (ϕ0 + ϕA + ϕB)) (6.7)
I+− = |A+|2|B−|2 = 4A4

0

(
1− cos

(
2πf−∆T + ϕA

)) (
1− cos

(
2πf+∆T + ϕB

))

= 2A4
0

(
2− 2 cos

(
2πf−∆T + ϕA

)
− 2 cos

(
2πf+∆T + ϕB

)

+ cos (−4πν∆T + ϕA − ϕB) + cos (ϕ0 + ϕA + ϕB)) (6.8)
I−+ = |A−|2|B+|2 = 4A4

0

(
1 + cos

(
2πf−∆T + ϕA

)) (
1 + cos

(
2πf+∆T + ϕB

))

= 2A4
0

(
2 + 2 cos

(
2πf−∆T + ϕA

)
+ 2 cos

(
2πf+∆T + ϕB

)

+ cos (−4πν∆T + ϕA − ϕB) + cos (ϕ0 + ϕA + ϕB)) , (6.9)

where we defined ϕ0 = 4πf0∆T . In order to get the averaged correlations over the
fluctuating frequencies, we have to integrate over all ν. Making use of the relation

∞∫

−∞

1√
2πσ

e−
x2

2σ2 cos (2πxt+ θ) dx = e−2π2σ2t2 cos θ, (6.10)

we obtain for the averages of the correlations

〈I++〉 =

∞∫

−∞

p(ν)I++ dν

= 2A4
0

(
2− 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕA

)
+ 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕB

)

−e−8π2σ2∆T 2

cos (ϕA − ϕB)− cos (ϕ0 + ϕA + ϕB)
)

(6.11)

〈I−−〉 = 2A4
0

(
2 + 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕA

)
− 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕB

)

−e−8π2σ2∆T 2

cos (ϕA − ϕB)− cos (ϕ0 + ϕA + ϕB)
)

(6.12)

〈I+−〉 = 2A4
0

(
2− 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕA

)
− 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕB

)

+e−8π2σ2∆T 2

cos (ϕA − ϕB) + cos (ϕ0 + ϕA + ϕB)
)

(6.13)

〈I−+〉 = 2A4
0

(
2 + 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕA

)
+ 2e−2π2σ2∆T 2

cos
(ϕ0

2
+ ϕB

)

+e−8π2σ2∆T 2

cos (ϕA − ϕB) + cos (ϕ0 + ϕA + ϕB)
)
. (6.14)

As we are interested in the probabilities to measure correlated Pc or anticorrelated Pa
detector clicks, we have to sum up the averaged correlations 〈I++〉 and 〈I−−〉, or 〈I+−〉
and 〈I−+〉, respectively. To obtain normalized probabilities, we need to divide by the sum
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of all correlations:

Pc =
〈I++〉+ 〈I−−〉

〈I++〉+ 〈I−−〉+ 〈I+−〉+ 〈I−+〉
=

1

4

(
2− e−8π2σ2∆T 2

cos (ϕA − ϕB)− cos (ϕ0 + ϕA + ϕB)
)

σ∆T�1≈ 1

2

(
1− 1

2
cos (ϕ0 + ϕA + ϕB)

)
(6.15)

Pa =
〈I+−〉+ 〈I−+〉

〈I++〉+ 〈I−−〉+ 〈I+−〉+ 〈I−+〉
=

1

4

(
2 + e−8π2σ2∆T 2

cos (ϕA − ϕB) + cos (ϕ0 + ϕA + ϕB)
)

σ∆T�1≈ 1

2

(
1 +

1

2
cos (ϕ0 + ϕA + ϕB)

)
. (6.16)

We used that σ∆T � 1 which follows from σ ∼ 1/Ts and ∆T � Ts. Assigning the value
−1 to the detectors DA− and DB−, and the value +1 to the detectors DA+ and DB+, we
can compute the averages of the “weighted intensities” measured at the detectors in the
right (A) and left (B) arms. By doing so, a positive average means that the intensity at
the detector with the plus label is larger. Conversely, a negative average means that the
intensity at the detector with the minus label is larger. We obtain

EA =
〈I++〉+ 〈I+−〉 − 〈I−−〉 − 〈I−+〉
〈I++〉+ 〈I−−〉+ 〈I+−〉+ 〈I−+〉

≈ 0 (6.17)

EB =
〈I++〉+ 〈I−+〉 − 〈I+−〉 − 〈I−−〉
〈I++〉+ 〈I−−〉+ 〈I+−〉+ 〈I−+〉

≈ 0, (6.18)

where we used σ∆T � 1 again. That the averages are approximately zero means that
the averaged intensities measured in the detectors are roughly the same. So there is no
(visible) single-photon interference in the unbalanced Mach-Zehnder interferometer if the
uncertainty in the frequency is large enough such that σ∆T � 1 is satisfied. For the
correlation coefficient, however, we obtain

C =
〈I++〉+ 〈I−−〉 − 〈I+−〉 − 〈I−+〉
〈I++〉+ 〈I−−〉+ 〈I+−〉+ 〈I−+〉

− EAEB = −1

2
cos (ϕ0 + ϕA + ϕB) , (6.19)

which means that fourth-order interference is observable even in the classical description,
but only with a visibility of

V =
Pc,max − Pc,min

Pc,max + Pc,min
=

1

2
, (6.20)

where Pc,max (Pc,min) is the maximal (minimal) value attainable for Pc depending on ϕA
and ϕB.

6.1.2 Quantum Theoretical Description

The quantum mechanical calculation presented here is based on the calculations done by
Howell in Ref. [100].

The transformations of the photon creation operators for the modes in the right arm
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(a†0(t)) and the left arm (b†0(t)) during the setup are given by

a†0(t) 7→ 1√
2

(
a†u(t) + ia†l (t)

)
7→ 1√

2

(
a†u(t) + ieiϕA+2πif−∆Ta†l (t+ ∆T )

)

7→ 1

2

(
a†+(t) + ia†−(t) + eiϕA+2πif−∆T

(
ia†−(t+ ∆T )− a†+(t+ ∆T )

))
(6.21)

b†0(t) 7→ 1√
2

(
b†u(t) + ib†l (t)

)
7→ 1√

2

(
b†u(t) + ieiϕB+2πif+∆T b†l (t+ ∆T )

)

7→ 1

2

(
b†−(t) + ib†+(t) + eiϕB+2πif+∆T

(
ib†+(t+ ∆T )− b†−(t+ ∆T )

))
(6.22)

where the intermediate creation operators a†u(t) and a†l (t) represent the modes in the
upper and lower arms of the unbalanced Mach-Zehnder interferometer (b†u(t) and b†l (t)

accordingly). The final creation operators a†+(t) and a†−(t) denote the output modes
of the second beam splitter directed to the detectors DA+ and DA−, respectively (and
accordingly for b†+(t) and b†−(t)). Due to the time delays in the lower arms of the Mach-
Zehnder interferometer, the operators a†l (t+ ∆T ) and b†l (t+ ∆T ) create modes by a time
∆T later than the operators a†u(t) and b†u(t) at the beam splitter.

The state |Ψ〉 of the two-photon system after the second beam splitters is then given
by

|Ψ〉 =
1

4

∞∫

−∞

∞∫

−∞

dt1dt2A(|t1− t2|)
(
a†+(t1) + ia†−(t1) + eiϕA+2πif−∆T

(
ia†−(t1+∆T )− a†+(t1+∆T )

))

×
(
b†−(t2) + ib†+(t2) + eiϕB+2πif+∆T

(
ib†+(t2+∆T )− b†−(t2+∆T )

))
|00〉. (6.23)

Here, |00〉 denotes the vacuum on the right and left side in the Fock spaces HA =
∞⊕
k=0

HA,k

and HB =
∞⊕
k=0

HB,k where HA,k and HB,k are the k-particle Hilbert spaces. The function

A(|t1−t2|) gives the amplitude for the modes being created with a time difference |t1−t2|.
Using the bosonic commutation relations [ai(t), a

†
j(t
′)] = δijδ(t− t′) and [bi(t), b

†
j(t
′)] =

δijδ(t− t′) with i, j ∈ {+,−}, we can compute

a+(t+τ)b+(t)|Ψ〉 =
1

4

∞∫

−∞

∞∫

−∞

dt1dt2A(|t1− t2|)
(
δ(t1−t−τ)− eiϕA+2πif−∆T δ(t1+∆T−t−τ)

)

×
(
iδ(t2 − t) + ieiϕB+2πif+∆T δ(t2 + ∆T − t)

)
|00〉

=
1

4

∞∫

−∞

dt1

(
δ(t1 − t− τ)− eiϕA+2πif−∆T δ(t1 + ∆T − t− τ)

)

×
(
iA(|t1− t|) + ieiϕB+2πif+∆TA(|t1− t+ ∆T |)

)
|00〉

=
i

4

(
eiϕB+2πif+∆TA(|τ + ∆T |)− eiϕA+2πif−∆TA(|τ −∆T |)

+A(|τ |)− ei(ϕA+ϕB)+4πif0∆TA(|τ |)
)
|00〉. (6.24)
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If we assume that ∆T � |τ | and that A(|t|) is peaked around zero, i.e., A(|∆T |) is
approximately zero, we can simplify Eq. (6.24) to obtain

a+(t+ τ)b+(t)|Ψ〉 ≈ i

4
A(|τ |)

(
1− ei(ϕA+ϕB)+4πif0∆T

)
|00〉, (6.25)

and similarly

a−(t+ τ)b−(t)|Ψ〉 ≈ i

4
A(|τ |)

(
1− ei(ϕA+ϕB)+4πif0∆T

)
|00〉 (6.26)

a+(t+ τ)b−(t)|Ψ〉 ≈ −1

4
A(|τ |)

(
1 + ei(ϕA+ϕB)+4πif0∆T

)
|00〉 (6.27)

a−(t+ τ)b+(t)|Ψ〉 ≈ −1

4
A(|τ |)

(
1 + ei(ϕA+ϕB)+4πif0∆T

)
|00〉. (6.28)

We are interested in coincidences within a window |τ | � ∆T as these coincidences cor-
respond to the cases where the photons travel either both along the long or both along
the short arms. As A is (sharply) peaked around zero, the probability for the photons
being created with a time difference of ∆T within the source is approximately zero. Thus,
our assumptions are justified. Now we can use the two-particle correlation functions to
compute the coincidences of measurements within the time window |τ |

c++(τ) = 〈Ψ|b†+(t)a†+(t+ τ)a+(t+ τ)b+(t)|Ψ〉 =
|A(|τ |)|2

8
(1− cos (ϕA+ ϕB+ ϕ0))

(6.29)

c−−(τ) = 〈Ψ|b†−(t)a†−(t+ τ)a−(t+ τ)b−(t)|Ψ〉 =
|A(|τ |)|2

8
(1− cos (ϕA+ ϕB+ ϕ0))

(6.30)

c+−(τ) = 〈Ψ|b†−(t)a†+(t+ τ)a+(t+ τ)b−(t)|Ψ〉 =
|A(|τ |)|2

8
(1 + cos (ϕA+ ϕB+ ϕ0))

(6.31)

c−+(τ) = 〈Ψ|b†+(t)a†−(t+ τ)a−(t+ τ)b+(t)|Ψ〉 =
|A(|τ |)|2

8
(1 + cos (ϕA+ ϕB+ ϕ0)) ,

(6.32)

where ϕ0 = 4πf0∆T . We can also choose a negative τ (such that the detector at the
right side clicks first within the time window) since operators ai(t) and bj(t) i, j ∈ {+,−}
commute and A depends only on the absolute value of τ . Thus we get the same dependence
as given in Eqs. (6.29) - (6.32) for a negative τ . Using the same convention as before where
the value −1 is assigned to the detectors DA− and DB−, and the value +1 is assigned
to the detectors DA+ and DB+, we obtain for the single-particle averages of coincidence
counts Ea for the detectors on the right side (A) and Eb for the detectors on the left side
(B)

Ea =
c++(τ) + c+−(τ)− c−+(τ)− c−−(τ)

c++(τ) + c+−(τ) + c−+(τ) + c−−(τ)
= 0 (6.33)

Eb =
c++(τ) + c−+(τ)− c+−(τ)− c−−(τ)

c++(τ) + c+−(τ) + c−+(τ) + c−−(τ)
= 0. (6.34)

The correlation coefficient for |τ | � ∆T is then given by

C =
c++(τ) + c−−(τ)− c+−(τ)− c−+(τ)

c++(τ) + c−−(τ) + c+−(τ) + c−+(τ)
− EaEb = − cos(ϕA + ϕB + ϕ0). (6.35)
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The normalized probabilities to measure correlated Pc or anticorrelated Pa detector clicks
can be computed as follows:

Pc =
c++(τ) + c−−(τ)

c++(τ) + c+−(τ) + c−+(τ) + c−−(τ)
=

1

2
(1− cos (ϕA + ϕB + ϕ0)) (6.36)

Pa =
c−+(τ) + c+−(τ)

c++(τ) + c+−(τ) + c−+(τ) + c−−(τ)
=

1

2
(1 + cos (ϕA + ϕB + ϕ0)) . (6.37)

So in the quantum mechanical description we obtain for the visibility

V =
Pc,max − Pc,min

Pc,max + Pc,min
= 1, (6.38)

where Pc,max (Pc,min) is like before the maximal (minimal) value attainable for Pc depend-
ing on ϕA and ϕB.

6.2 Simulation of the Franson-Interferometer
Experiment

In this section, we employ the discrete-event simulation approach to reproduce the quan-
tum mechanical results derived in the previous section for energy-time entangled pho-
tons. We aim at showing that the discrete-event simulation is capable of reproducing
the quantum theoretical result of the Franson-interferometer experiment. Moreover, we
demonstrate that making use of postselection offers a way to achieve these quantum me-
chanical results from data obtained from the discrete-event simulation which is purely
classical and exhibits no quantum features such as entanglement. The problem is similar
to the Einstein-Podolsky-Rosen-Bohm (EPRB) experiment with polarization entangled
photons or spin 1/2-particles which has been already simulated [10]. The differences are
that here the correlation of the photons originates from the frequencies instead of the po-
larization, and as we want to observe interference, we have to use the adaptive detectors
with learning machine because due to the fluctuating frequencies, linear elements like the
beam splitters do not produce interference patterns.

The simulation is based on the setup given in Fig. 6.1. The source creates two messen-
gers with frequencies f0 ± ν, where ν is chosen at random from the distribution given in
Eq. (6.1), and f0 = 327 500 GHz. The uncertainty σ in Eq. (6.1) is σ = 42 500 GHz. The
values for f0 and σ are selected similarly to the experiment reported in Ref. [95].

We generate k = 200 data points where for each data point the parameter ξ of the
polarization, and the initial phases ψ1 and ψ2 of the messengers are chosen uniformly at
random from [0, 2π) for both messengers. The phase shifts ϕA and ϕB are also chosen at
random between 0 and 2π anew for each data point. For each data point, N = 500 000
messengers with the same parameters ξ, ψ1, ψ2, ϕA, and ϕB are generated. The variation
in the frequencies ν is updated every Nν = 100 events such that the fluctuating frequencies
cause decoherence, and the first-order interference vanishes.

After the generation of the messengers, each of them is transformed by their own
devices, i.e., the devices in the right (left) arm of the interferometer get information
only from one of the two messengers. Due to the fluctuating source, we can use the
simple beam splitters described in section 2.5, and for the phase shifters we use the
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transformation mentioned in section 2.4. The detectors are the most sophisticated devices
in this simulation. Basically, we use the detectors with the learning machines introduced in
section 2.6. In addition, we let the detectors change the detection time of the messengers.
As we are interested only in the difference of the detection time, we first set the creation
time of the messengers to zero. Then, the messengers collect time delays if they travel
along the long arm of their unbalanced Mach-Zehnder interferometer. This time delay
due to the different lengths of the interferometer arms is chosen to be ∆T = 2 ns which is
a typical value according to [100]. From f0∆T = 655 000 it follows that ϕ0 = 4πf0∆T is
a multiple of 2π and we can neglect it in Eqs. (6.36) and (6.37). In our time delay model
of the detector, the time delay td depends on the internal state of the detector, i.e., on
the vector Y:

td = −T0 (1− ||Y||)v log (r) , (6.39)

where the parameters T0 and v have to be chosen appropriately, and r ∈ [0, 1) is a random
number drawn anew for each messenger from a uniform distribution. The model for the
time delay was already introduced in Ref. [15]. We find that we can select the parameters
of this time delay model such that we obtain satisfactory results. Basically, the model
generates random time delays according to an exponential distribution where the mean is
a function of the detector’s internal state Y which is affected by the incoming messages.

After trying various values for T0 and v, we finally decided to use T0 = 400 ns and
v = 2 for both detectors. So the detectors add a random time delay to the messengers
and possibly produce a click, i.e., a one, or no click, i.e., a zero. If both detectors return
a one, the difference in the times of the messengers is computed and compared with the
time window τ which we set to τ = 0.033 ns. If the absolute value of the time difference
is smaller than the time window τ , the event is counted as a coincidence, otherwise it is
discarded. In case of a coincidence, the event contributes to one of the counters c_pp,
c_pm, c_mp or c_mm which correspond to the two-particle correlation functions c++, c+−,
c−+, and c−− that we need to compute the probabilities Pc and Pa, the averages Ea and
Eb, and the correlation coefficient C.

The results are shown in Fig. 6.2 and Fig. 6.3. For the chosen set of parameters,
the results are in excellent agreement with the quantum mechanical description, and in
the cases of the correlation coefficient C and the probabilities Pc and Pa, exceed the
prediction of the classical calculation. In Fig. 6.2, the results of the probabilities Pc and
Pa are visualized, and the sinusoidal shape as a function of ϕA +ϕB is clearly observable.
Thus, we achieved fourth-order interference with the visibility being close to the one
predicted by quantum theory. The plots of the correlation coefficient C and the single-
particle expectation values Ea and Eb dependent on ϕA + ϕB are depicted in Fig. 6.3.
The expectation values are nearly zero and fluctuate statistically about zero which means
that the detectors DA+ and DA− (DB+ and DB− as well) click with approximately equal
probability, i.e., no single-particle interference occurs.

Hence, the discrete-event simulation is capable of reproducing the quantum theoretical
prediction for the fourth-order interference of energy-time entangled photons although the
discrete-events simulation is classical in the sense that the messengers’ trajectories are
always well-defined, and the simulation method satisfies Einstein’s criterion of locality.
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6.2 Simulation of the Franson-Interferometer Experiment
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Figure 6.2: Probabilities to measure correlated (Pc) or anticorrelated (Pa) coincidences
dependent on the sum of the phase shifts ϕA +ϕB. The theoretical, quantum mechanical
results are represented by the orange and dark blue lines, respectively. The classical
expectation is visualized by the pink and green lines. Stars and squares represent the
simulation results. For each data point, N = 500 000 events are generated. The time
window is set to τ = 0.033 ns, and the detector’s learning parameter is set to γ = 0.6.
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Figure 6.3: Correlation coefficient C and single-particle averages Ea and Eb dependent on
the sum of the phase shifts ϕA +ϕB. The parameters N , τ , and γ are the same as in Fig.
6.2. The pink line represents the quantum theoretical result.
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6 Franson-Interferometer

Conclusion

In this chapter, we have shown that we can reproduce the quantum theoretical predictions
for the Franson-interferometer with the discrete-event simulation. In quantum theory, the
photon states in the Franson-interferometer experiment can be described as energy-time
entangled states. Postselection then leads to the visibility of the fourth-order interference
attaining the value 1. Here, we have demonstrated that we are capable of reproducing
the quantum mechanical predictions with postselection of events generated by a discrete-
event simulation. The generation of these events has nothing to do with entanglement,
nevertheless the results coincide with the quantum theoretical description.

72



7 Summary

In this thesis, we utilized the discrete-event simulation method to simulate experiments
of quantum walks, quantum key distribution, the Franson-interferometer, and factoring.

To simulate quantum phenomena, usually the Schrödinger equation is solved numeri-
cally. For discrete-event simulations of quantum phenomena, neither the time-dependent
Schrödinger equation nor the wave equation needs to be solved. The method which we
discussed in chapter 2 is based on the simulation of single particles moving through an
experimental setup of distinct devices. The devices affect the internally stored states of
the particles called messages which may then influence whether and where the particles
are finally detected. In turn, the internal states of the particles affect some of the de-
vices, namely those containing a learning machine, usually the beam splitters or detectors.
Through this mechanism, particles can influence the path taken by the following parti-
cles and finally lead to interference. However, the particles cannot communicate directly
with each other as there is always only one particle in (its part of) the setup. Moreover,
these simulated particles have well-defined trajectories. Thus, they satisfy Einstein’s cri-
teria of realism and local causality. Nonetheless, discrete-event simulations are capable of
reproducing quantum mechanical predictions.

We used this method to reproduce and investigate the results of experiments which
show quantum phenomena. We focused on experiments performing quantum walks and
quantum key distribution, but also simulated the Franson-interferometer and a proposal
by Summhammer for factoring with a network of Mach-Zehnder interferometers.

We examined that proposal for factoring in chapter 3 in three steps: First, we had a
look at the basic idea of three consecutively arranged Mach-Zehnder interferometers with
changing phase differences to check three numbers for being factors. This turned out to
work, but not perfectly well. So already the basic idea did not work as well as expected.
The intensity patterns, which were measured at the detectors and were to be used to
decide whether a factor was included in the tested numbers, sometimes deviated a lot
from the intensities in the table given in the proposal. Nevertheless, the discrete-event
simulation could reproduce the intensity patterns that could be computed exactly without
using the approximations made in the proposal.

Second, we investigated a straightforward but also somewhat incomplete version to
parallelize the check for factors, and third, we examined the version for parallelization
given in the proposal. The straightforward version is just an extension of the basic idea
such that at each output arm of a Mach-Zehnder interferometer, additional Mach-Zehnder
interferometers were placed until there were always three in succession. Because in this
arrangement there were no modifications in the detection scheme, it was possible that
no particles were passing through some of the interferometers. As a result, sometimes
not all numbers were checked for being factors. Nevertheless, at least one factor could be
determined whenever at least one was included in the tested numbers. However, as for the
basic idea, the intensity patterns of the simulation and exact evaluation (which matched
very well) differed from the look-up table which was obtained by applying approximations
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7 Summary

to get rid of the dependence on the tested numbers.
The more complex way for parallelization given in the proposal takes into account

that at some times no particles are passing through some of the interferometers. It
circumvents this fact by delaying the changes of the phase differences and measuring the
intensities at different stages. The construction of the general look-up table then required
more approximations which led to even larger deviations from the exact evaluation. The
results obtained by the discrete-event simulation and the exact evaluation coincided well.
However, due to the approximations the look-up table that was to be used to determine
which numbers were actually factors deviated a lot from the measured intensities, thereby
making the distinction of the patterns difficult. So for this experiment, we found that the
discrete-event simulation is capable of reproducing the theoretical results, but we could
not be convinced of the applicability of the setup in order to obtain the factors of a given
number.

After a short discussion of the random walk, we started with the investigation of the
quantum walk in chapter 4. As for the random walk, a particle is moved to the left or
to the right, but for the quantum walk the direction depends on some degree of freedom
of the particle, e.g., the polarization in case of a photon. If this degree of freedom is in
a superposition state, the particle’s position state is in a superposition of being moved
to the left and to the right. Applying a Hadamard transformation to the degree of
freedom and then moving the particle again leads to interference effects for more than
two movements. Thus, the probability to detect the particle at a certain detector complies
with a distribution which originates from interference.

We investigated and simulated two different experiments implementing the quantum
walk. The first one was implemented with a network of beam splitters and phase shifters
only, but here, in contrast to the factoring experiments, we implemented a variable number
of levels in the simulation. The comparison of the analytical results of the quantum walk
and the results obtained from the discrete-event simulation showed that we are capable
of reproducing the probability distribution of the quantum walk by means of the discrete-
event simulation which is in a sense purely classical.

Depending on the phase difference induced by the phase shifters, we could control the
symmetry of the quantum walk as could the experimentalists. We also validated that for
asymmetric quantum walks the mean value of the position can deviate from zero, which
is the mean value of the position for the random walk if zero was the initial position.
What also distinguishes the quantum walk from the random walk is the growth of the
variance of the position. For the random walk, the variance of the position grows linearly,
whereas for the quantum walk we could confirm that the variance of the position grows
approximately quadratically.

In the second experiment which we examined regarding the quantum walk, the quantum
walk is shown to violate the Leggett-Garg inequality which we also discussed briefly. As
this experiment was performed with atoms, we had to adapt the setup such that we could
simulate this experiment as if it was done with photons. For the simulation of this setup
we had to apply polarizing beam splitters and half-wave plates. First, we simulated the
experiment for three different runs. In this way we could reproduce the same results as
the experimental group, i.e., we found a violation of the Leggett-Garg inequality which is
supposed to indicate that “macroscopic realism” and “non-invasive measurability” cannot
both be satisfied. As the group claimed to have achieved “non-invasive measurability”,
they concluded that the quantum walk does not satisfy “macroscopic realism”.
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Therefore, as a second test, we performed the same steps with the random walk. How-
ever, we found that in this case, the Leggett-Garg inequality was satisfied. In the experi-
ment, particles have been discarded to obtain the data that brought about the violation
of the Leggett-Garg inequality. So we changed the way of gathering the data by adding
a label of the particles’ positions. In the simulation we could do this without inducing
disturbances, and thus measure the particles’ positions non-invasively. In this way, we
could obtain all necessary data from a single run, and this data finally did not violate
the Leggett-Garg inequality. Thus, we could show that the violation of the Leggett-Garg
inequality was caused by the discarding and mingling of data of different runs which is
still effectively an invasive measurement. In the simulation, we did not need to do so
as we could easily perform a non-invasive measurement, and hence we did not achieve a
violation of the Leggett-Garg inequality with the data of the quantum walk from a single
run. So we can conclude that the quantum walk in the simulation satisfied “non-invasive
measurability” as well as “macroscopic realism”, but in the experiment the group did not
achieve “non-invasive measurability”. Thus, they cannot make a statement about whether
or not their experiment of the quantum walk satisfied “macroscopic realism”.

Next, in chapter 5 we had a look at quantum key distribution. First, we discussed clas-
sical cryptography, where “classical” refers to the nowadays used techniques not involving
quantum mechanics. Summarizing, the problem of classical cryptography is either that
the security is based on assumptions of computational hardness (like for factoring in the
case of RSA), or that cryptosystems which are unconditionally secure are so inconvenient
to use due to the complicated key handling that they are not applicable for everyday use
(like the one-time pad).

Then we discussed in more detail the first quantum key distribution protocol (the BB84
protocol), which promises in theory a secure way of exchanging a key for the one-time
pad. The basic idea of the protocol is that Alice sends photons at random in one of four
polarization states of two conjugate bases and Bob measures the polarization in one of the
two bases at random. By comparing the chosen bases and discarding the measurements
where they used different ones, they know they agree on the remaining polarizations
without the need of announcing them. In that way, they can secretly acquire a string of
shared bits which they obtain from the two polarization states of each basis. Due to the
use of conjugate bases and the no-cloning theorem, they can detect any eavesdropper by
comparing parts of their measured polarizations. Unfortunately, in reality the protocol is
not as secure as in theory due to imperfections in the implementations.

Subsequently, we reviewed the progress of quantum key distribution made in the last
years regarding security issues due to these imperfect implementations and proposals for
improvement. Finally, we considered one of the recent quantum key distribution ex-
periments in which security is based on measurements of parities only. The performed
measurements are single-photon Bell-state measurements where the two qubits are repre-
sented by two degrees of freedom of the same photon.

We simulated this experiment by using the discrete-event simulation method. Again
we utilized the implementations of beam splitters and phase shifters, but we had to use a
different kind of implementation for the detectors than before as in this setup time played
an important role. For this reason, we had to simulate a fluctuating source which sent
photons with various frequencies. Due to the varying frequencies, the coherence, which
is needed for interference to occur at linear optical elements such as beam splitters, was
destroyed. Thus, interference had to originate from the only non-linear elements used in
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7 Summary

the setup, namely the detectors.
We could reproduce the same functional dependence of the Bell-state measurement

outcomes on the setting of the phase shifters as in the experiment. We could use these
relations to generate a key. So we were able to reproduce the correlations assigned
to Bell states which are described by entanglement in quantum theory. Although the
discrete-event simulation comes without the need of quantum theory and entanglement,
we achieved a replication of these correlations for the simulated particles.

The next experiment investigated in chapter 6 was the Franson-interferometer experi-
ment, which is sometimes also applied to quantum key distribution. The aim of the exper-
iment itself is the measurement of the quantum mechanical visibility of the fourth-order
interference of energy-time entangled photons originating from a two-photon source, for
example a crystal realizing parametric down-conversion, without measuring single-photon
interference. The photons produced by the source pass through one of two unbalanced
Mach-Zehnder interferometers and are detected by one of four detectors. Only coinci-
dences are counted, i.e., two of the detectors, one at each Mach-Zehnder interferometer,
have to produce a click within a certain time window for the event to be registered. Then
the correlations of the detected events are computed pairwise for one detector of each
interferometer for observing the fourth-order interference depending on the phase shifts
that were set up in the unbalanced Mach-Zehnder interferometers.

We computed the expected visibilities of the fourth-order interferences for classical
wave theory and within quantum theory. The visibility in the quantum mechanical case
is twice as large as in the classical theory. In the simulation we had to add a time tag
model such that we could discard non-coincident events to obtain the quantum mechanical
visibility. Because time again had to be considered explicitly, and for the entangled pho-
tons in this experiment the frequencies were supposed to cover a relatively large spectrum,
the simulated source also generated photons with fluctuating frequencies. We used the
detectors with learning machine to obtain the interference pattern. The time-tag model
caused random delays in the detectors, partly depending on the photons’ stored messages.
In this way, we have been able to reproduce the quantum mechanical prediction with the
discrete-event simulation method. The correlation leading to the observable fourth-order
interference is described by energy-time entanglement in quantum theory, but we could
reproduce these results without making use of entanglement or wave functions. Only the
postselection of events based on coincidences in time was needed to achieve the quantum
mechanical result.

In conclusion, we could apply the discrete-event simulation to all investigated quantum
mechanical experiments and reproduce the results of the experimental implementations
and the predictions of the theoretical descriptions. Although we did not solve the time-
dependent Schrödinger equation or another wave equation, but used the discrete-event
simulation method which satisfies Einstein’s criteria of local causality and realism, we
were still able to observe quantum effects such as interference and correlations associated
with entanglement.
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