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1. Introduction

Quantum theory is a physical theory with exceptional descriptive power [DKM14|. At
the heart of it lie simple algebraic mathematical concepts, commonly referred to as super-
position and entanglement. These concepts are not present in Boolean logic, i.e., the logic
that conventional digital computers are based on. For a novel machine called universal
quantum computer which inherently utilizes these algebraic concepts, however, one can
devise algorithms for certain computationally hard problems that can achieve an expo-
nential speedup over the best known algorithms for traditional computers. A significant
representative of these algorithms is Shor’s factoring algorithm [Sho94], which is one of
the most intriguing results in the field of quantum information processing. It is formu-
lated in terms of quantum gates that require precise control over the individual degrees
of freedom of the underlying computational units, the so-called qubits. This scheme is
known as gate model quantum computation.

Over the last decades, the requirements for a computational device working precisely as
this theoretical model predicts have been laid out [DiV00|, and tremendous experimental
effort has gone into manufacturing such a machine. However, due to the vast variety
of microscopic systems that can be successfully described by quantum theory, and the
requirement of an immense level of control over the system, a sufficiently large universal
quantum computer is still a long way off. So far, only small such devices of less than ten
qubits have been built [KBF+15; GCS15|.

Fortunately, the small size still allows a deep physical analysis of the specific imple-
mentation of quantum computer hardware. When such a study is carried out using
the formalism of non-relativistic quantum theory, the state of the system containing the
qubits is described by a state vector |W(¢)) which is an element of a complex Hilbert space
‘H. Starting from some initial state |¥(0)), the time evolution of the system is generated
by its Hamiltonian H(t) according to the time-dependent Schrodinger equation (TDSE)

.0
ih - [W(0) = H(E) () (L1)

As the Hamiltonian H(¢) is a Hermitian operator on #, the solution to Eq. can
be expressed in terms of a unitary time evolution operator U(t,t,) satisfying |¥(t)) =
U(t,0) |¥(0)). In the context of quantum computation, this operator represents the quan-
tum gate operation that is executed on the system. The specific gate can be designed by
tuning external controls such as voltages or magnetic fluxes modelled by H(t). If a suffi-
ciently accurate Hamiltonian is known, all quantum-mechanical properties of the system’s
evolution can in principle be extracted from Eq. (1.1]). Otherwise, one can still describe
a reduced part of the system by replacing Eq. with the von Neumann equation. In
addition to this, other effective methods have been devised to describe further incoherent
dynamics caused by additional environmental components that are not part of the actual
quantum-theoretical description. One of these methods is based on the Lindblad master
equation |[NC11|. However, we are interested in the fundamental quantum-mechanical
properties of the system emerging from Eq. .



1. Introduction

To study the TDSE theoretically, one option is to use analytical methods and sophis-
ticated techniques inspired by mathematical statements to extract key features about the
system. However, at some points, it is inevitable to make certain approximations or ide-
alizations in order to reveal these features and understand their potential w.r.t. quantum
computing.

This is the point where the field of computational physics and computer simulation sets
in: By solving the TDSE given by Eq. without making any further approximations,
the full quantum-mechanical nature of the system is accessible. Obviously, due to the
huge amount of information contained in the TDSE, such a study is often inspired by
previous analytical work. In that sense, computer simulation complements analytical
work as a third pillar next to theory and experiments, as it permits a study of the quantum
mechanical properties of the systems at a level that is usually inaccessible to experiments.
In many fields of engineering and industry, such simulations are done to divulge potential
limitations of the system before the actual experimental implementation is carried out,
which is obviously also done for financial benefit. Thus, in the context of quantum
computing, the advantage of using a computer simulation on the basis of the TDSE is that
all sources of fundamental systematic gate errors resulting from necessary simplifications
and approximations done in the theory can be individually located, singled out, analyzed,
understood, and hopefully eliminated at almost no experimental or monetary cost.

Motivated by this idea, we still have to find a suitable set of fast and unconditionally
stable algorithms to actually solve the TDSE. One family of such algorithms is called
product-formula algorithms, and the mathematical framework to construct them from
the form of the Hamiltonian H(t) was presented in 1987 [DeR87|. A major part of this
project deals with the analytical derivation of such algorithms and their implementation
on a digital computer. To run these algorithms for specific physical setups, we have de-
veloped a convenient software application offering a graphical user interface and various
visualization options.

The quantum computing systems that we focus on are based on superconducting cir-
cuits. This approach to quantum computer hardware is one of the most promising and
successful [GCS15; BK15; Reil5|. The key element contained in the underlying supercon-
ducting qubits is the Josephson junction |Jos62]. Fortunately, for networks of Josephson
junctions and other linear circuit elements such as capacitors and inductors, there ex-
ists a systematic method of deriving Hamiltonians using electrical network graph theory
[BKDO04]. This will allow us to find a generic model Hamiltonian H(t) describing an ar-
bitrary number of superconducting qubits and different sorts of couplings. The software
package can then be used to analyze potential single-qubit and two-qubit gate schemes,
and to test different effective coupling Hamiltonians for superconducting circuits.

In particular, the model Hamiltonian supports implementations of the so-called trans-
mon qubit that has become one of the preferred technologies in the superconducting
community [Reil5; SMC+16|. It does not suffer from charge fluctuations as much as
the former charge qubit [KYG-+07|, and it can be conveniently controlled by microwave
irradiation through its interaction with transmission line resonators. The disadvantage,
however, lies in its reduced anharmonicity. Consequently, the presence of higher non-
computational states can be detrimental to the qubit dynamics and in turn limit the
speed of quantum gates. Therefore, sophisticated pulse-shaping techniques have been
developed to improve the speed and the gate fidelity of single-qubit gates [MGR+09;



CDG+10; GMM+11]. Tt is one of our aims to study the effect of these pulses on the
higher levels and to assess how they can be used to speed up high-fidelity single-qubit
operations.

To make a qubit system universal for quantum computation, a universal two-qubit
gate must be implemented [DiV95| at least between nearest neighbors [DBK+00]. Since
the transmon qubits are often operated at fixed frequencies with static linear couplings
[CSM+15; | GCS15; [KBF+15|, a two-qubit interaction is needed that does not rely on
tuning the individual transmons. The cross-resonance gate is such a two-qubit gate for
systems with an untunable transverse coupling that relies only on microwave control
of the qubits. Its name is due to the principle that one qubit is driven at the reso-
nance frequency of the other. The idea was initially formulated for capacitively coupled
charge qubits [Par06|. A few years later, some deeper theoretical studies were presented
[RD10; |GAL-+12|, and the principle has been tested and used in experiments [CCG+11;
CGC+12;|CGC+13;|CGM+14; |[CMS+15; TCM+16; IBM16| to generate entangling gates
such as the CNOT gate. To enhance the speed and the fidelity of the gate, a procedure
based on Hamiltonian tomography has recently been introduced [SMC+16|, where terms
have been measured which were not predicted by the previous perturbative analysis.
Such terms are sometimes attributed to classical or environmental effects beyond the
time evolution generated by the system’s Hamiltonian [CGC+13; [Warl5]. Our aim is to
understand to which degree these terms are fundamentally contained in the Hamiltonian
of the two-qubit transmon setup, and which effects are due to incoherent dynamics beyond
the unitary evolution. Since the system considered in our simulation is, by construction,
based purely on the quantum-mechanical time evolution governed by the Schrédinger
equation, we apply the same procedure to our system in order to answer this question.

This work is structured as follows: In chapter 2, we review the physical theory of su-
perconducting qubits from a condensed-matter perspective. This includes an inspection
of certain apparent mathematical paradoxes concerning the superconducting phase oper-
ator, as well as a description of the systematic rules used to construct Hamiltonians from
electric circuits. This discussion is followed by applications to some specific circuits and
concluded with a brief overview of the current state of the art. In chapter [3| we present
the family of model Hamiltonians that our algorithms are based on. The first family mod-
els superconducting qubits with various couplings, and the second represents a system of
spin qubits that can be seen as an ideal universal quantum computer. Chapter [4] then
deals with the derivation of the different algorithms to solve the TDSE. For that purpose,
a deep analysis of the analytical properties of our Hamiltonians is required. Subsequently,
we give a short description of the visualization methods offered by the program. Finally,
we present a new procedure of testing effective Hamiltonians and their effects in the re-
duced qubit dynamics of the system. In chapter [ we then apply the computational
tools to some proposed and implemented quantum computing systems. The first class is
based on charge qubits, where we will specifically address the system forming the basis
for the cross-resonance gate. The second class deals with single-qubit gates and two-qubit
interactions of transmon qubits coupled via transmission line resonators. For single-qubit
gates, we will find cases where certain pulse-shaping techniques can be successfully em-
ployed to achieve high-fidelity single-qubit gates. Finally, for two-qubit interactions, we
will discover new properties of the driven and undriven transmon-resonator Hamiltonian
in the two-level approximation, and thereby also learn about the inherent nature of such
effective Hamiltonian approximations.






2. Superconducting qubits

One of the most promising realizations of quantum computer hardware relies on super-
conducting circuits that contain Josephson junctions as their central elements. Such a
Josephson junction consists, in its most fundamental form, of two superconducting ma-
terials with a thin insulating barrier in between. In this chapter, we first review these
Josephson junctions and present an effective theory to describe superconducting circuits.
Next, we present a selection of specific setups used in quantum computer experiments,
and finally we briefly look at the current state of the art in superconducting quantum
computing.

2.1. Superconductivity and Josephson junctions

As the name suggests, superconducting circuits are based on superconductivity. How-
ever, even though this physical effect is crucial for the devices to work, its properties in
condensed matter may not seem very evident in the literature on superconducting qubits
(see e.g. [WS06; (CCE+06; Lanl3|). The reason is that usually, once the basic effects
of Josephson junctions in superconducting circuits have been introduced, an effective
theory in terms of Hamiltonians and simple circuit rules is employed. This theory has
proven quite successful in describing experimental realizations and therefore we review
it in section [2.2] Before that, however, it is instructive to look at Josephson junctions
from a condensed-matter physics point of view to understand why they are so essential
in superconducting circuits.

2.1.1. Description in the BCS theory

A very common and fundamental way to describe superconductivity on a microscopic
level was presented by Bardeen, Cooper, and Schrieffer (BCS) in 1957 [BCS57]. Until
then, the observable effects of superconductivity, such as the infinite conductance and
the Meissner-Ochsenfeld effect, were often described by means of a phenomenological
theory given by London and London in 1935 |LL35|. The big accomplishment of BCS
was to derive these effects from a microscopic model of an interacting electron system on a
lattice. They showed that the presence of an attractive interaction (mediated by phonons)
between the negatively charged electrons can induce a second-order phase transition at a
critical temperature. This so-called Cooper instability causes the electrons to effectively
form Cooper pairs, i.e., bosonic pairs with an integer spin. These can then condense into
the same single-particle ground states without violating the Pauli principle.

Note that these Cooper pairs actually only exist on very short time scales and are
delocalized in position space. Furthermore, this picture of Bose-Einstein condensation
differs somewhat from the original picture by BCS. Nevertheless, it serves our purpose
to think of the actual charge carriers as effective particles made from two electrons, thus
carrying a charge of twice the elementary charge.
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The BCS ground state, which is basically the ansatz for a variational method, can be
written as

lp) = H <u,g + ewvgc%cf_&) 0) . (2.1)
k
Here, |0) denotes the vacuum state and the fermionic operators C%T (CT—Ei) denote the

creation of an electron with momentum k (—%) and spin up (down). The coefficients ug
and vy are real parameters for the variational method; their explicit form is not important
for our purpose. What is all the more important, however, is the occurrence of a single
collective phase ¢ that is attached to all electron pairs created in the state |p). Although
the phase can be gauged away in isolated superconductors by a global transformation
of the fermionic operators, it exhibits crucial dynamics when two superconductors are
put close to each other. Josephson studied a system of two such superconductors with
a tunnel coupling Vi between them [Jos62|. If the two superconductors are initially
prepared in the ground state from Eq. , the joint state of the system can be written
as [Str04]

k

For these states, the global transformation of the electron operators removing the phase
in Eq. would still leave the phase difference ¢ = ¢y — ;. This is the reason why
the phase variable is so important for superconducting tunnel junctions. Therefore, we
define a set of states spanning the degenerate BCS ground state manifold through

’90> = |_§7 %) 9 2 € [07 271') 9 (23)
together with a quantum phase operator

2

b= / dolo) o lol . (2.4)

0

Aslong as the superconductors stay in the ground state manifold with a macroscopic num-
ber of Cooper pairs (i.e. the characteristic energy scales are smaller than the Bogoliubov-
quasiparticle excitation energies needed to break a Cooper pair), these states are sufficient
to describe the dynamics of the system. The coupling energy due to the tunnel coupling
Vr then amounts to [Str04]

(o|Vrlg) = —Ejcosp . (2.5)

The prefactor represents the strength of the tunnel coupling and is called the Josephson
energy E; o< A% where A is the superconducting energy gap.

Taking the formalism a bit further (see [WS65| or [Jos74]; see also the derivation based
on Hamiltonian dynamics in appendix |Al), one can deduce two very interesting effects
for the voltage V' and the current I across a Josephson junction. These are the so-called
AC and DC Josephson effects and have so stunning implications that they have caused
quite some skepticism in the 1960s until they were measured experimentally. The basic
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equations are

I =1I.singp (DC Josephson effect) (2.6)
V= gcp (AC Josephson effect) | (2.7)
e

where . = 2eFE;/h is the critical current. Here, e denotes the electron charge and h
is the reduced Planck constant. Equation implies that a mere phase difference
between the two superconductors causes a tunnel current through the insulator. This
direct current is carried by Cooper pairs (i.e. pairs of electrons) that tunnel coherently
between the superconductors and is therefore called a supercurrent. What is remarkable
is that the current occurs without the presence of an external electromagnetic field, thus
being completely dissipationless. The second effect described by Eq. implies that
a constant voltage across the junction causes a constant slope for the phase difference
. In conjunction with Eq. , this results in an alternating current oscillating at a
fixed frequency proportional to the voltage. In that sense, a Josephson junction acts as a
perfect voltage-to-frequency converter. Apart from that, the second effect also indicates
another way of interacting with superconducting circuits and, in particular, the phase:
Consider a closed superconducting loop with a Josephson junction and a magnetic flux
®,., piercing the loop. Then Faraday’s law of induction tells us that a change @ex induces
a voltage across the junction which can, through Eq. , directly affect the phase ¢.
Thus external voltages and magnetic fields are the crucial quantities that we will use to
interact with superconducting circuits from outside.

For the role that superconducting tunnel junctions usually play in applications of quan-
tum computing, one often employs a description in terms of an effective Hamiltonian that
exposes the property of a Josephson junction as a storage box for Cooper pairs. This
description will be briefly summarized and discussed in the following.

2.1.2. Effective Hamiltonian for a Josephson junction

The Josephson energy E; in Eq. is one of two characteristic energy scales for a
Josephson junction. The other characteristic energy stems from the fact that there is not
only a tunnel coupling, but also an electrostatic interaction between the two superconduc-
tors. With C' denoting the capacitance of the superconductor-insulator-superconductor
geometry, the scale of this electrostatic interaction is given by the so-called charging
energy

(2€)*
20

o= (2.8)
It physically represents the energy needed to charge the capacitor with an additional
Cooper pair having a charge 2e. In terms of the difference n = ny — n; in the number of
Cooper pairs on both sides of the insulator, the electrostatic interaction energy is then
given by FEcn?.

With the two energies representing the characteristic energy scales of Josephson junc-
tions, standard quantum theory tells us that we should now be able to derive the system’s
dynamics by considering a Hamiltonian of the form

HJJ = ECﬁQ - EJ COS@ . (29)
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Thereby, the number operator 7 =) n |n)(n| is defined through its eigenstates

2

In) := %/dgpem“’\@ . (2.10)

0

This definition via the Fourier transform can be physically understood by examining its
effect on the BCS ground state |p) in Eq. (2.1): Expanding the product, we see that for
every Cooper pair created by C%TCT_EJ,, the phase is increased by e*. Due to the orthog-
onality of e™™¥ the integration in Eq. (2.10)) then kills all terms with a phase different
from np. Thus only states with a number of n Cooper pairs survive the integration and

contribute to |n).

For now, we follow the usual course found in the literature (cf. [WS06|, [Che07], and
[Lan13|) which is to simply declare n and ¢ as conjugate variables. This implies that
both are Hermitian operators and Fourier transform duals of one another, i.e.

.« .0 .
n = i— and n,pl=1 . 2.11
{le)} Op 7] 21

If we just take this as a given rule for Eq. (2.9)), the TDSE for a state

2w

w(t) = [ deviot)le) 212

0

reads

2

B b(p,0) = ~Be (o, ) — Eycospi(e, ) (2.13)

0p?
Thus the evolution of the phase difference across a Josephson junction is governed by a
wave function (¢, t). Strong support for this step lies in the fact that the implied phe-
nomena have been verified in experiments, frequently going under the name of “Macro-
scopic Quantum Phenomena” |Call4].

Another argument for just taking n and ¢ as conjugate variables is the intuitive rep-

resentation of the Hamiltonian Eq. (2.9) in the eigenbasis {|n)} of the number operator:
Using the inverse relation to Eq. (2.10))

o0

o) = > e™n) (2.14)

n=—oo



2.1. Superconductivity and Josephson junctions

we find
27

. 1 )
) = o= [ dole) e feln)

0

27
1 .
- d —i(n—1)¢
5 / pe )
0
1) . (2.15)

The Josephson junction Hamiltonian Eq. (2.9 can thus be written as

. e 4 e~
Hyy = Ecin? — EJT
o0 ) oo EJ
= > Ecn’ln)n|— ) = (In)n + 1+ [n+ 1)nl) (2.16)

Hence the cosine term immediately induces Cooper pairs tunneling one by one back and
forth through the junction, which agrees with the intuitive picture of a Josephson junction
from the previous subsection.

2.1.3. A note on apparent paradoxes

Irrespective of how good the previous formalism including the rule of declaring n and
¢ as conjugate variables may appear, there are some difficulties that arise upon closer
inspection. They can be traced back to well-known problems with pairs of conjugate
variables, one of which being a periodic operator such as the phase. A collection of some
affected cases in quantum mechanics has already been discussed in [CN68|, with a few
first suggestions on how to resolve the problems. Furthermore, a compilation of many
historic and modern papers on the quantum phase problem and its solution can be found
in the book by Barnett and Vaccaro [BV07|. In the following, we state the problems
applying to our discussion and describe a possible solution to them.

(I) The first problem lies in the definition of the number states in Eq. (2.10). We argued
that the integration kills all terms in Eq. that do not have exactly n Cooper pairs.
So n must be a non-negative integer. In the inverse relation given by Eq. , however,
we naturally let n range from —oo to co. If we only started at n = 0 instead (such that n
was bounded from below), the inverse Fourier transform would not work. Furthermore,
the phase operator that is actually Hermitian from its definition in Eq. (2.4]), would gen-
erate a nonunitary operator U = €' since U |0) = 0, as shown in [CN68| and [Str04].
How can we solve this inconsistency?

A physical argument is given in |Lanl3|, saying there is always a positive background
charge due to the O(10%%) nuclei of the materials. Then n = 0 only represents the state
in which the number of Cooper pairs exactly compensates this background such that the
net charge condition is neutral. So we could include negative n as a convention and ap-
proximate the lower bound by —oo. However, this reasoning still leaves the mathematical
part of our argument below Eq. invalid. It can be corrected, though, by recalling
that we actually treat a Josephson junction consisting of two superconducting reservoirs.
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Thus the correct definition of |n) in Eq. would need to be based on the states |p)
from Eq. , where ¢ refers to the phase difference across the junction. For a term
in Eq. (2.2) where n; Cooper pairs are created in the first and ny in the second part of
the product, the complex phase factor is then given by e~i1#/2¢in2¢/2 — gilna=m)#/2 Qo
the integration keeps only states with a phase e where n = (ny — ny)/2 is the relative
number difference between the superconductors, which can obviously be negative as well.
Approximating the large total number of Cooper pairs N = ny; + ny by oo eventually
solves the problem.

(IT) The second problem lies in the commutation relation given in Eq. (2.11)), together
with the assumption that both operators are self-adjoint on the entire Hilbert space.
Using the proper representation following from Eq. ([2.14)

2

i= [dolohins <r— 0 (2.17)

}890
0

we can verify the commutation relation in the space span{|¢)}:

In principle, as the commutator is independent of the basis, this should hold in general.
However, an evaluation of the commutator in the number states {|n)} yields

(n|(n@ — gn)ln) = (n —n) (n|gln) =0# . (2.19)
N——

€[0,27) due to the bounded spectrum of @

There have been some suggestions in the literature on how to solve this apparent con-
tradiction. In |CNG68]|, it is argued that the phase operator is itself not an appropriate
operator and must be replaced by periodic extensions sin ¢ and cos ¢. Loss and Mullen
reasoned in |[LM92| that this replacement (albeit possible) is not necessarily a conve-
nient solution, as physicists are usually interested in commutation relations of conjugate
variables. Therefore, they avoid the issue by defining an inner product in (p-space and
compute matrix elements only through this definition. Then the calculation of (n|[n, ¢||n)
effectively uses the same steps as in Eq. and thus produces the same result. How-
ever, by restricting ourselves to this fixed definition for any inner product, we lose the
mathematical convenience associated with Dirac’s notation, namely that we work on an
abstract Hilbert space and can evaluate inner products in any representation by inserting
completeness relations 1 =Y |n)n| = [ do|p)ep|.

So the bottom-line question is, can we find a mathematically satisfying explanation
why this problem arises at all? It turns out that we can, if we look more carefully at the
domains of the operators we use. As rigorously demonstrated in the book by Gustafson
and Sigal |[GS03|, such domain considerations should always be done when working with
infinite-dimensional Hilbert spaces, without just blindly abusing the simplicity of Dirac’s
notation. Otherwise, similar problems can be constructed with the standard position
and momentum operators & and p (see |Gie00|). Therefore, let us take a closer look
at the domain of the operator [n, @]. As shown in appendix [B] the operator ¢ is self-
adjoint, bounded, and perfectly well-defined. The unbounded operator n, however, is

10
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only well-defined and self-adjoint on states |¢)) with a wave function ¥ (¢) = (p|¢) that
satisfies ¥ (0) = ¥ (27) (together with 1" being square-integrable), so there is already some
restriction. For the operator [n, ¢|, the proper domain is (see appendix

D([n, ¢]) = {[v) : ¥, 4" € L*([0,2]) and ¥(0) =(2m) =0} . (2.20)

Now the number states |n) have a wave function n(p) = (p|n) = e="¢ /27 (see Eq. (2.10)).
This function does obviously not satisfy n(0) = n(27) = 0, so it is not inside the domain
of [f, ¢]. Thus it makes mathematically no sense to apply this operator on |n), let alone
evaluate matrix elements w.r.t. |n). So it is no surprise that we can tune the calculation
in Eq. to produce any value such as i or 0. However, if we adhere to the proper
domain of the operator, we will always arrive at [n, @] = ¢ without any contradiction at
all.

2.1.4. Alternative models

It should be noted that there have also been alternative models to describe a Josephson
junction, some with a deeper focus on physical properties and some from a mathematical
perspective. They have been nicely summarized in [Str04] and we only mention three
complementary models.

(I) A very simple and intuitive view was given by Feynman in chapter 21-9 of [FLS65].
Since a superconductor can be described as a coherent wave of Cooper pairs with one
collective phase, he proposed a wave function ¥; = \/Ee“"i where p; is the Cooper pair
density and ¢; is the phase of each superconductor. Based on a coupling K due to the
insulator between both superconductors, and an external voltage V' applied across the
junction, he wrote down a TDSE

8\111 eV

X 8‘112 €V
— =——Uy + K¥; . 2.21b
th ot 9 2+ 1 ( )

Remarkably, this simple model can already correctly describe the most interesting physi-
cal effects about Josephson junctions, namely the DC and the AC Josephson effects given
in Eq. and Eq. .

Using the framework of quantum theory, this derivation of the Josephson effects is
obviously based on the standard postulates of quantum mechanics. Due to the simplicity
of Egs. and (2.21D)), it might be an interesting task to overcome the remaining
assumptions by applying the principles of logical inference [DKM14; DKM16|. These
principles have already been proven capable of deriving equations for quantum mechani-
cal key experiments [DKD+15a], the Pauli equation [DKD+15b|, and the Klein-Gordon
equation [DKR~+16| by only using observations from robust experiments and plausible
reasoning.

(IT) Another effective model inspired by the bosonic character of Cooper pairs in su-
perconducting wires has been presented in |[ADSO01]. In their work, they start from a
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2. Superconducting qubits

two-mode boson Hamiltonian

E 2 K
H = TC (a];al — a§a2> - WJ <a1a2 + agal) , (2.22)

where ag creates a Cooper pair on side 7 of the Josephson junction. The first term counts

the relative number of Cooper pairs on both sides of the insulator and thus models
the charging energy of the capacitor. The second term is responsible for Cooper pairs
tunneling through the junction and thus represents the tunnel coupling. In that sense,
the model already resembles the Hamiltonian in Eq. . Compared to other bosonic
systems such as Bose-Einstein condensates, the only odd factor seems to be the 1/N in
front of the coupling term. A physical reason for it lies in the fermionic character of the
two electrons forming the Cooper pair: They have to be put into unoccupied states on
the other side of the insulator, so there is no bosonic enhancement of the coupling.

A nice property of the model is that it is set in a finite-dimensional Hilbert space and
thus does not suffer from the mathematical difficulties presented earlier. Additionally,
even though the number states seem more fundamental to start with in this model, the
quantum aspect of the phase difference ¢ across the junction enters naturally when the
formalism is carried on (see |[Str04]). Moreover, eventually taking the limit N — oo

correctly reproduces the TDSE in Eq. (2.13).

(III) Finally, there is a path-integral method to derive the dynamics of the phase of
a Josephson junction presented in [AES82; ESA84|. In their work, the authors use a
functional-integral formulation to treat Josephson junctions from a microscopic perspec-
tive. The method is perhaps more fundamental, in the sense that they derive the equa-
tions describing the BCS treatment presented above as an approximation. The model is
quite elegant from a field-theoretic point of view, and it also takes into account dissipative
effects through quasiparticle tunneling that our description has excluded.

2.2. Circuit quantization

To construct superconducting qubits, one needs to incorporate the central nonlinear el-
ements, the Josephson junctions, into electric circuits. These can be quite complicated
and difficult to handle from the condensed-matter perspective outlined in the previous
section. Fortunately, there exists a quite effective procedure to handle complex circuits,
which does not necessarily rely on superconducting elements. It is probably the most
economical way to address the problem.

In short, the procedure uses the Lagrangian formalism from analytical mechanics to
derive Hamilton functions representing the complete circuit. After some generic quanti-
zation step reminiscent of the canonical quantization of classical mechanics, one obtains
a Hamiltonian describing the dynamics of the quantum device like the Hamiltonian we

derived in Eq. (2.9).

2.2.1. Lagrangian and Hamiltonian description of electric circuits

An electric circuit is, in principle, an arbitrary network of electric elements such as capac-
itors, inductors and resistors. They can be coupled to external voltage sources, current
sources, or magnetic fluxes in order to control and interact with them. A standard way
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2.2. Circuit quantization

to derive the dynamics of such a circuit is to identify all nodes and branches, write down
Kirchhoft’s laws for the currents and voltages, eliminate all superfluous degrees of free-
dom, and solve the system of coupled differential equations. Although this procedure
works, it can result in complicated sets of equations that are not easy to handle.

A more systematic way to derive the dynamics lies in a step similar to the transition
from Newtonian to Lagrangian mechanics: In the case of dissipationless electric compo-
nents (like ideal capacitors, inductors, and Josephson junctions), it can be shown that
the equations of motion derived from Kirchhoff’s laws are equivalent to Kuler-Lagrange
equations for a certain Lagrangian. To derive this Lagrangian from the circuit, there
exists a methodical procedure based on electrical network graph theory [Dev97| that we
will review shortly. Note that it is also possible to describe dissipative circuit elements
and study relaxation and decoherence for superconducting qubits within this formalism
[BKDO4].

Once the Lagrangian of the circuit has been written down, an equivalent Hamiltonian
description can be obtained by performing a Legendre transformation. The Hamilton
function also paves the way to quantize the circuit. In that step, the question might
arise under which circumstances such a quantum description is necessary, and when it is
still sufficient to stick to the classical equations of motion. For a simple LC-circuit, for
instance, the proper indicator is the ratio of the circuit’s resonance wavelength and its
geometric size: Consider a circuit with a large capacitance and a large inductance such
that w/2r = 1/(2nvV/LC) ~ 1GHz, so it has a characteristic wavelength of A\ ~ 0.1m.
If its physical size is on the order of 100 pm < A, it can already behave as a quantum
harmonic oscillator with only one macroscopic collective degree of freedom [Dev97|. In
that sense, the LC-circuit provides a reservoir for electromagnetic excitations (photons)
of the same kind as standard cavities in quantum optics experiments, and the quantiza-

tion step is formally equivalent to the quantization of a single-mode electromagnetic field
(see |GKO5)).

We now review the procedure of obtaining the Lagrangian and Hamiltonian descrip-
tion of the circuit based on the presentation in |Bis10] and [BKDO04]; many examples and
proper derivations can also be found in [Surlj].

(I) The first step is to represent the circuit diagram as a directed graph. All circuit
elements are represented as branches b, and connections between them become nodes n.
Subsequently, a spanning tree (i.e. a loop-free version of the graph including all nodes)
has to be chosen. This spanning tree effectively divides all branches into tree branches
that are part of the spanning tree, and closure branches connecting two nodes of the
spanning tree without being part of the tree itself. A closure branch thus closes a loop
[(b) that has been broken by the choice of the spanning tree.

One arbitrary node is chosen as ground. Every other node is called active node and is
assigned a flux variable ®,,, defined as the time integral of the voltages along the unique
path over all tree branches b from this node to ground, i.e.

t

Op(t) = Sy / Vy(tdt' (2.23)

—00

where S,,;, = %1 is a sign representing the direction of the branch in the directed graph.
Note that this definition is, in principle, an expression of Faraday’s law of induction. The
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2. Superconducting qubits

Lagrangian £ will then be a function of all fluxes ®, and the corresponding voltages
V, = (I>n associated with each active node n. It is worth mentioning that this choice
of flux variables for the Lagrangian description of the circuit is a convention. It has
the advantage that the corresponding Hamiltonian naturally becomes a function of the
charges (number of Cooper pairs) and fluxes (phases) like the Hamiltonian in Eq. (2.9).

(IT) The next step is to construct the Lagrangian £ = T'—U from the capacitive energy
T and the inductive energy U. For this purpose, each branch b = n — n’ is assigned a
branch flux

B, — {Cbn, —d, (if b is a tree branch) (2.24)

P, — @, £ Ojf)  (if bis a closure branch closing the loop I(b))
For closure branches, CID%) is the external magnetic flux piercing the loop [(b). Its sign
has to be chosen according to the right-hand rule. In our case, we have to distinguish
between three different kinds of branches, each producing a different term in either T or
U:

c2

(a) If the branch is a capacitor of capacitance C, add its capacitive energy —* to T'.

(b) If the branch is an inductor of inductance L, add its inductive energy % to U.

(c) If the branch is a Josephson junction characterized by its Josephson energy E;, add
its inductive energy —FE; cos ¢, with ¢, = %@b to U.

Note that a bare Josephson junction explicitly belongs to the class of inductive branches
since they can be seen as inductors with a nonlinear dependence of I on ® (see Eq. (2.6)).
Also, the capacitive part of a Josephson junction characterized by its charging energy in
Eq. has to be treated as a capacitive branch according to (a).

(IIT) The next step is the Legendre transformation to obtain the Hamiltonian descrip-
tion of the circuit. We define the canonical momentum for each node as

o

Q= 5 (2.25)

It physically represents the charge accumulating in the node. This system of equations
has to be solved for ®,,. Then we perform the Legendre transformation

H:=> Qub,—L (2.26)

to obtain the Hamilton function of the circuit as a function of all charges and fluxes
associated with each node.

(IV) The last step is given by the quantization procedure. Since we have supercon-
ducting circuits with Josephson junctions and Cooper pairs as charge carriers in mind,
we first perform a change of variables (@, ®) — (n, ¢) for each node via

Q 2e 21
and = —0b=—0, . 2.27
pi= 3 (2.27)

ni=—
2e

Here, n denotes the charge in terms of the number of Cooper pairs, ¢ is the supercon-
ducting phase discussed in the previous section, and ®, = h/2e is the superconducting
flux quantum.
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2.2. Circuit quantization

The actual quantization step resembles the quantization of position and momentum
variables in standard quantum mechanics: We elevate number and phase variables to
operators 1 and ¢ obeying canonical commutation relations [n, ¢] = i as discussed in the
previous section. With regard to the discussion in section [2.1.3] this rule should not be
seen as a rigorous procedure, but rather as a means of arriving at the proper Hamiltonian
dictating the dynamics of the system due to its collective degrees of freedom |[Dev97| (see
also |Girll]).

The advantage of this set of rules lies in their systematic nature such that they facil-
itate a treatment of quite complicated circuits. However, doing it by hand can be rather
cumbersome as the Legendre transformation for a large system basically amounts to in-
verting the symmetric matrix associated with the underlying quadratic form. To simplify
the procedure, one can apply the usual parallel and series circuit rules in advance, and
collect known parts of the circuit into effective combinations (such as the bare Joseph-
son tunnel junction and its associated capacitor). In doing so, Hamiltonians of different
circuit components are often simply added to obtain the full circuit Hamiltonian. It
has to be stressed, though, that the proper way to derive a circuit’s Hamiltonian is to
first construct all terms of the Lagrangian as outlined above, and then properly perform
the Legendre transformation. Without doing this, one risks losing information about
cross-capacitive terms and their energy scales.

We will now go ahead and apply these rules to a selected set of systems that will be of
importance for the remainder of the thesis. They serve as an illustration of the procedure
and may prepare for the somewhat more involved example in the following section.

2.2.2. Application to selected systems

Josephson junction

C

Figure 2.1.: Circuit symbol for a Josephson junction. The capacitive and inductive char-
acter of the superconductor-insulator-superconductor geometry have to be treated sep-
arately. The first is represented by the standard capacitor symbol, and the bare cross
denotes the tunnel junction. Both are combined into one effective circuit symbol given
by a crossed box.

The Josephson junction in Fig. is modelled as a capacitor C' and a tunnel junction
characterized by its Josephson energy F;. In accordance with the recipe presented in the
last subsection, we represent the circuit as a two-terminal network graph, see Fig. 2.2
We choose the bottom node as ground, which automatically makes the top node an active
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2. Superconducting qubits

node associated with the flux variable ®. The spanning tree must be a loop-free version
of the graph, so we arbitrarily choose the inductive branch (the blue curve in the figure).
This makes the capacitive branch a closure branch. As there is no external flux piercing
the loop, both branch fluxes are given by +® and their voltages by +®.

—
X =
&

A ll

Figure 2.2.: The network graph of the electric circuit of a Josephson junction consists of
the ground node 0, the active node ®, and the spanning tree chosen arbitrarily as the
inductive branch. Thus this branch becomes a tree branch, and the capacitive branch
becomes a closure branch.

Since we have two branches in total, we expect the Lagrangian £ = T — U to consist
of two terms. The inductive term goes into the potential energy U as —E; cos(2n®/®y).
Similarly, the capacitive term enters into the kinetic energy T as C'®2 /2. Hence we obtain
the Lagrangian

092

£=7

2
+ Ej cos (~—7TCI>) : (2.28)
Do

For the Legendre transformation, we compute the canonical momentum @ = 9L/ 0b =
C® and use this relation to eliminate ® in Eq. (2.26)). After the change of variables
according to Eq. (2.27) and the quantization step, we obtain

(2¢)”

H= n?— Ejcosg (2.29)

2C
——
Ec
which is exactly the same expression as the Hamiltonian we derived in Eq. (2.9).

Tunable Josephson junction

A very convenient circuit element, namely a flux-tunable Josephson junction, can be
obtained by shunting two Josephson junctions in a superconducting loop pierced by an
external magnetic flux ®.,. Together with an external current bias, this is commonly
known as a DC Squid and can be used as a sensitive magnetometer [Che07]. For us,
this example serves as a very basic application of the formalism where it is necessary to
distinguish between tree branches and closure branches.

The circuit of the system along with a spanning tree is shown in Fig. [2.3] To stress the
important aspect of the setup and for the sake of simplicity, we omitted the capacitive
parts of the junctions; carrying them through the Legendre transformation is not a big
problem, though.
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2.2. Circuit quantization

Figure 2.3.: Setup of a superconducting ring with two Josephson junctions and an external
magnetic flux ®., threading the loop. The spanning tree is chosen as the left inductive
branch. Note that there are no boxes around the junctions; the capacitive parts have
been omitted for the sake of simplicity.

Since the graph consists of inductive branches only, the Lagrangian does not depend on
the voltages ®. Therefore, the Legendre transformation reduces to H = —£ and we can
directly construct the Hamiltonian. The only important step now lies in distinguishing
between tree and closure branches: The left branch belongs to the spanning tree, so it
causes a term —FE; cos ¢ in the Hamiltonian. The right branch, however, closes the loop
that is pierced by the external flux ®.,, so the branch flux according to the right-hand
rule and Eq. is ® — 0+ ®.,. Note that this rule immediately enforces conservation
of magnetic flux in the loop, without the need to eliminate superfluous degrees of freedom
afterwards.

In terms of the reduced flux variable ¢., = 27,/ ®,, we thus obtain

H=-FE; COS Y — Ej cos (90 - gbew)

= 2F; cos % oS (gp — qb;) : (2.30)
—_——
=:Ej(¢ex)

So the setup behaves as one effective Josephson junction whose Josephson energy E;(¢e,)
is tunable through an external magnetic flux. Note that for a time-independent flux, the
phase shift inside the second cosine can be eliminated by a shift of variables.

This effect is very important in experiments since the Josephson energy directly in-
fluences the dynamics of the system. Having it tunable from outside thus presents an
immediate way to control and interact with the circuit. This can be important for e.g.
the realization of gates in applications of quantum computing. Without being explicitly
mentioned, the Josephson energy FE; is often considered to be controllable by this very
setup.

Voltage source

In many circuits, one way of controlling the system is to apply a certain voltage to some
node. To do so, we have to know how the existence of a voltage source is expressed in
the present circuit formalism.

An ideal voltage source is a two-terminal device that can maintain a fixed voltage V'
w.r.t. ground. As such, it can be seen as a large capacitor Cs — oo charged with a charge

Qs — oo such that Qg/Cs = V = const. Consider coupling this voltage source via a gate
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2. Superconducting qubits

capacitor Cy to some arbitrary system described by a Lagrangian £. This setup is shown
in Fig. together with a spanning tree. Note that in conjunction with a spanning tree
of the other system, the branch over Cg could in principle be a closure branch. This does
not change the result, though, since the ideal voltage source is assumed to be unaffected
by a potential external magnetic flux.

Figure 2.4.: Voltage source coupled through a gate capacitor Cy to a larger system. The
flux node ® is one node of an arbitrary system described by the Lagrangian L. It is
represented as a large square in the circuit diagram. The ideal voltage source is modelled
as a large capacitor Cs — oo charged with Qg — oo such that Qg/Cs = V. As the
voltage V' is the only essential information entering the Lagrangian, the source capacitor
Cs of the voltage source model is usually represented by a mere circle enclosing this

voltage label (see Fig. 2.5 or [2.6).

The first branch of the tree is associated with the branch voltage ®g = V and causes
a capacitive energy shift of CsV2/2 in the kinetic energy T. As a constant, this term
is irrelevant for the dynamics of the system, so we simply drop it. The second branch
has a branch voltage of ® — &g, so it produces the term Cy(® — V)2/2 in T. Hence, the
Lagrangian transforms under this capacitive coupling as

c, (@—v)2

L— L+ 5

(2.31)
The Legendre transformation is of course affected in a nontrivial way, so there is no easy
rule to describe how the Hamiltonian transforms. However, for many systems such as the
one in the next example, a voltage bias generically causes a shift in the number operator
n by some gate-controlled constant.

Cooper pair box

In section [2.1.1] we already learned that the capacitive part of a Josephson junction can
be charged with a discrete number of Cooper pairs. Through a capacitively coupled
voltage source, this number can be controlled by external parameters. To understand
how this comes about, we study the corresponding circuit shown in Fig. 2.5l This setup
is also known as Cooper pair box (CPB) and was first presented in [BVJ+98|.
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2.2. Circuit quantization

@H@L
B S 7a\

Figure 2.5.: Circuit diagram of a Cooper pair box consisting of a Josephson junction
coupled to an external bias voltage V, via a gate capacitor Cy. The effect of the voltage
source is that the relative number of Cooper pairs stored in the capacitor C of the
Josephson junction can be controlled by tuning V.

Combining the Lagrangian of the Josephson junction given in Eq. (2.28) with the
voltage-bias rule derived in Eq. (2.31]), we obtain the CPB Lagrangian

. 2
cir Cy(0-V) o
L= 5t 5 + E; cos (gf) . (2.32)

Solving the canonical momentum relation Q = dL£/9® for ® then yields

1
@:
C+C,

(Q+C,V,) . (2.33)

After performing the Legendre transformation, completing the square, and neglecting a
constant, the Hamiltonian for the CPB in the number and phase variables reads

@) o CVy?
=30+ (n+ e ) Ejcosp . (2.34)
— >
Ec g

Compared to the unbiased Josephson junction described by Eq. , we can mark two
differences: First the charging energy is reduced a bit by the presence of the gate capacitor
Cy,. Since this capacitance is usually small Cy < C it is often neglected in the expression
for the charging energy. Second, the number operator n is shifted by the gate-induced
offset n, = —C,V,/2e. This is interesting insofar as it provides a means to control the
preferred number of Cooper pairs from outside.

Together with the flux-tunable Josephson junction depicted in Fig. 2.3 we have now
two control parameters for this simple circuit, namely a magnetic field and the applied
voltage. If the essential dynamics can be restricted to a two-dimensional computational
subspace span{|n)|n = 0,1} spanned by the number states |0) and |1) (we will later
discuss applications where this is the case), one can perform a so-called two-level approx-
imation (TLA):

Hea S (n)n| Him)m| . (2.35)

n,m=0,1

Using the representation of n and cos ¢ from Eq. (2.16]), we can express these in terms of
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the Pauli matrices o = |0)0| — [1)1| and o = |[0)1| + |1XO]:

(7 —ny)” = n2 [0)0] + (1 — ng)” [1Y(1] = <ng — %) 0% + const (2.36a)
cos s A % (0Y1| + [1(0]) = %af | (2.36D)

Thus the CPB Hamiltonian projected onto the computational subspace becomes

H ~ E¢ (ng - 1) 0% — Max . (2.37)
2 2
This already shows a simple example of a qubit realization using superconducting circuits.
By unitary time evolution e *#*/" with ®,, and V, as control parameters, we can generate
arbitrary single-qubit rotations on the Bloch sphere. With one single qubit, there is
of course not that much quantum computation to do; indeed, the difficult part lies in
coupling different qubits.

It should be mentioned that there is a certain significance concerning the parameter
ng: Given that E;/Ec < 1 (the so-called charge-qubit regime), a voltage of ny, = 0 or
ngy = 1 causes the system to relax into the charge state |0) or |1), respectively. Now a
special situation is produced if we tune the gate voltage to n, = 1/2 which causes the
ground state to be a uniform superposition of |0) and |1). This is usually called a sweet
spot since the dispersion relation as a function of the external voltage has a vanishing
first derivative, so the charge qubit is less sensitive to fluctuations in the bias voltage V.
Gate realizations for this type of qubits generally try not to leave this sweet spot in order
not to worsen the qubit coherence.

Another regime for this circuit, the so-called transmon regime, is further discussed in
section [2.3] Before we come to that, however, we will look at a specific realization of
coupling multiple charge qubits. This will serve as a somewhat more involved example
of how to apply the above rules to obtain a Hamiltonian from an electric circuit.

2.2.3. Josephson-inductive coupling

In the following, we derive the circuit Hamiltonian for an array of m Josephson-inductively
coupled Cooper pair boxes. The idea has been proposed in [YTNO3| and [YWY+08]|, and
we use the circuit (see Fig. as a demonstration of how the afore-mentioned rules can
be systematically applied.

The Cooper pair boxes are characterized by their capacitances C; and their Josephson
energy Ej;. Bach is connected to a bias voltage V,; by a small gate capacitance Cy; <
C;. The Josephson-inductive coupling consists of m Josephson junctions of the same
capacitance C; and potentially different Josephson energies E;c;. All these coupling
junctions are connected to ground through a big Josephson junction E;, with a high
capacitance Cj, thereby enclosing an external magnetic flux ®,.
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Figure 2.6.: Circuit diagram of m Cooper pair boxes coupled by a Josephson-inductance
JO. The big blue circles denote the flux nodes of the spanning tree of the circuit diagram.
The flux nodes &, through ®,, are located at the point where the Cooper pairs reside in
the m boxes. Each of these is coupled to the flux node ®, of the Josephson junction J0
by an additional tunnel junction JC'i. These represent the closure branches that enclose
the external magnetic flux ®.,. Note that there are no flux nodes between the voltage
sources Vy; and the corresponding gate capacitances C,; inside the spanning tree. The
reason is that the effect of the voltage biases on the kinetic energy of the circuit is already

accounted for by Eq. (2.31]).

The inductive energy U of the circuit is easy to obtain as all Josephson junctions Ji
give a contribution of the form —F}; cos ¢;, where ¢; = 21n®;/ ®y. The junctions JC% on
the closing branches are not part of the spanning tree, so their contribution includes the
external flux ®,, resulting in terms of the form —E;¢; cos (pg — @; + Per). As before, all
lower-case symbols ; and ¢., represent the dimensionless versions of the flux variables
®; and P.,. In total, the inductive energy thus amounts to

U = —Ejcos pg+ Z (—Ej;cosp; — Ejcicos(pg — @i + Gez)) - (2.38)

=1

As U only contains the pure system’s variables ¢y and ¢; (i € {1,...,m}), it simply
carries through the Legendre transformation and thus already constitutes the potential
part of the circuit Hamiltonian H.

The capacitive energy 7T is a bit harder to handle, because many cross-capacitive terms
will arise in the Legendre transformation. In the following, “=" always means up to a
constant. We start by splitting 7" into the contribution T from the coupling junction J0,
and the contributions 7; from each junction J7 in the spanning tree and JC' outside the
spanning tree. Apart form these, T; also contains the effective contribution of the voltage
bias as shown in Eq. (2.31). Hence, in terms of the voltages ®;, the capacitive energy
reads

T=To+> T , (2.39)

=1
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where
d)Q
T, = 002 0 (2.40a)
Ci (6= b)) Coi (61— V)
P2 i(i_ 0) i(i_ 1)
Ti:CQw ) el (2.40D)

Since the gate capacitances C; are in general negligible compared to the junction capac-
itances C;, we make one approximation to the capacitive energies 7;, namely that the
coeflicient of (I>Z2 in T; becomes 2C; + Cy; =~ 2C;. In experimental setups such as the one
in [YWY-+08|, this is usually the case. Thus the capacitive energy reads

. . 2
C,d2? Ci (‘I)i - CI’0) :
T, = 5 L 5 — CiVu®; . (2.41)

For the Legendre transformation, we need the voltages ®; expressed in terms of their
canonical conjugates @Q; = J3.T', which also represent the charges induced by the number
of Cooper pairs on each junction capacitor. For these charges, we obtain

oT;
b,

or
Q=75 (CO+ZC><I>O—ZC<I> , (2.42b)

which can be recast as

Qi = = 20;®; — Cydg — CyiVy; (2.42a)

Qi CyiVyi (i)o
5C, + 20 + 5 (2.43a)

QQ  CyiVyi
0 Z Zlé—zg . (2.43b)

Here we introduced the parameter Cy; = 2Cy+ )" | C; which is physically equal to twice
the total junction capacitance of the circuit.

The Legendre transformation is made up of terms of the form Q;®; — T}. Since T} is
quadratic in the variables @Z, the terms arising in this expression need to be carefully or-
dered. The elimination of @, is postponed until all occurrences of <I>2 have been gathered.

&; —
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Thus we obtain

: _ QZQ Qngi‘/gz Ql(I)O ng‘/gz q)%
R e R T6) M)

ng ‘/gz %
2

— 202

C4C, 20 4 2
(2.44a)
. ZQO Qo@; < QOngng Cocbg
Qoo — Ty = +JZ ; o 5o (2.44D)

In the sum over i of these terms, the coefficient of ®2 is —(2Cy + 32, Ci)/4 = —Cx /4.
Using the relation

C C ’Lvl Q’LQ Q Qz
42<1>8+Z I, _———;4021 Z 0 (2.45)
we arrive at the Hamilton function
HzZ(QiCB—T-) +U
T_n 2 Ql . QiQ; QiCy;Vy; Q Qz = QoCyiVyi
:Z Z ; 1o Z zcg*;gj Z : ;—OCQE £ +U

(2.46)

The next step is to complete the squares such that the characteristic offset charges and
energy scales can be identified, i.e.

> CyVai\?
H Z <4C 402) (QZ + ng‘/;)z) (QO + 1T>

+ Y 5 CE (Qi + CuiViyi) (Qj + Cyi Vi) + Z Qi+ U (2.47)

Now we introduce the variables n; = Q;/2e for i € {0,...,m} denoting the respective
number of Cooper pairs that the junction capacitors are charged with. Similarly, we
define the gate-induced reference numbers ny, = —CyV,;/2e for ¢ € {1,...,m} (the
corresponding reference for ¢ = 0 can be expressed in terms of these). The capacitances
C; and Cy can be absorbed in the charging energies E¢; := ¢?/C; and Egq := 4€*/Cx.
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After the quantization rule, the Hamiltonian of the circuit finally reads

m m 2

N N i= Ng;

H = Z (EC’z + leECO) (’I”LZ — ’I’Lgi)2 + EC’O (no — %)
i=1

Z %Eco (7 — ng) (N — ngj) + Z Econgn

_|_
1<i<j<m i=1

+ Z <_EJi cos p; — By COS(@O — @i+ ¢ex)) — FEjcosgg . (2-48)
=1

Here we can observe some physical effects of the circuit components: The shunting of
the capacitances belonging to the Josephson junctions results in a shift of Egg/4 to
each individual CPB’s charging energy. The voltage sources Vj; induce shifts of the
number operators 7, as mentioned in section but the shifts do not affect each
occurrence of the number operators. The specific shift of ny in the charging term of the
coupling junction can be understood as the capacitive action of the gate-induced charges
on the coupling junction (the factor 1/2 coming from the splitting of the CPBs into two
Josephson junctions). Finally, we see that the cross-capacitive contributions ~ 7;n; are
of the same order of magnitude as the charging energy FE¢( of the coupling junction JO,
so they should not be neglected unless Fry < E¢;.

2.3. Circuit QED

The charge qubit described by Eq. that we have discussed in the previous section
is usually operated in a regime where the charging energy is much greater than the
Josephson energy, i.e., F;/Ec is somewhere between 0.1 and 0.01 (hence the name).
This property makes charge qubits quite sensitive to environmental charge fluctuations
such that the gate voltages have to be tuned to some sweet spot n, ~ 1/2 where the energy
dispersion w.r.t. n, has a vanishing slope. Nevertheless, sufficient long-time stability is
still a major problem since large fluctuations can drive the qubit out of the sweet spot.

To overcome this problem of high charge sensitivity, Koch et al. proposed in 2007
another type of superconducting qubits based on the same CPB Hamiltonian, the so-
called transmon |[KYG+07|. It is characterized by an increased ratio of E;/Ex ~ 10—100,
and the name refers to a shunted transmission line used to achieve this. When coupled
to a transmission line resonator, the system behaves in the same way as cavity quantum
electrodynamics (cavity QED) setups in quantum optics. The transmon then takes on the
role of an artificial atom whose parameters can be engineered, and the resonator represents
the cavity. This has led to the name circuit QED (circuit quantum electrodynamics)
|Girll], and we review the basic constituents in this section.

2.3.1. The transmon

The transmon qubit essentially resembles the ordinary CPB with a flux-tunable Josephson
junction, the only difference being an increased energy ratio E;/Ec that is typically
between 10 and 100. This is achieved by shunting the Josephson junction with a large
capacitance Cp that effectively increases C, such that Ec oc C~! becomes quite small
compared to Ej;. In optical micrographs, this shunting capacitance C'g can often be
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2.3. Circuit QED

directly observed as interdigitated fingers.

I
I
| Ce
C_in EJ C

(@)
6/9 Ly Cr ‘B CDCX

Figure 2.7.: Circuit of the transmon setup. The flux-tunable Josephson junctions are
shunted with a large capacitance Cp to increase the charging energy Eo. The voltage
source V, and a transmission line resonator characterized by C, and L, are capacitively
coupled to the transmon, and an external circuit (not shown) is used to generate the flux
for tuning E;. Figure redrawn from [KYG-+07|.

What effectively happens in the process of increasing F;/FE¢ can be understood from
the spectrum of the corresponding Hamiltonian given in Eq. (2.34). In ¢-space, the
stationary Schrodinger equation for a wave function () defined by Eq. (2.12)) reads

E¢ (Z’% - ng) — E; cos 90] V(p) = EY(p) - (2.49)

This is a type of Mathieu’s differential equation and its solution can be expressed in
terms of Mathieu sine and cosine functions [AS64|. The eigenenergies E,, are given by
Mathieu’s characteristic value as shown in [KYG+07|. They are plotted as a function of
the gate voltage n, in Fig. for different values of E;/FE¢. One can clearly see how
the dependence of the lowest part of the spectrum on the voltage grows much weaker for
higher ratios of E;/FE¢. This can be explained as follows:

For large Ec, H is essentially dominated by Ec(n — ny)? and the eigenvectors are
approximately given by the charge states |n) defined in Eq. (2.10). Hence the eigenener-
gies as a function of the gate voltage E,,(n,) are narrow parabolas centered at integers.
Fluctuations in n, can thus easily disturb the system, which is exactly the problem of
the charge qubit mentioned above. Now by increasing E;/FE¢, the Josephson term in
H becomes more and more important which effectively flattens the parabolas. In fact,
one can show that the distance between the minimum and the maximum of E,,(n,) for
each level m scales down with exp(—+/32E;/E¢) [KYG+07| (the difference by a factor
of 4 comes from the alternative definition of the charging energy in Eq. (2.§))). Thus the
system’s sensitivity to charge noise through n, is exponentially suppressed.
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Figure 2.8.: The lowest eigenenergies F,—g 123 of the CPB Hamiltonian in units of E¢
as a function of the gate voltage n, for various ratios of the Josephson energy E; and the
charging energy E¢. For Ec > E; (upper left), the ground state |m = 0) is approx. given
by the charge state |n = [n, 4+ 3]). In that case, the system’s sensitivity to changes in
the gate voltage is highest. It grows notably weaker on the way to the transmon regime,
where the eigenstates |m) become superpositions of charge states around |[ng + 1) (see
text). Note that the ratios E;/Eq differ from [KYG+07| by a factor of 4 due to the

alternative definition of F¢ in Eq. (2.8]).

However, the ratio of Josephson energy to charging energy cannot be made arbitrarily
large. The problem is that increasing the ratio makes the eigenenergies almost equidistant.
More precisely, the relative anharmonicity o, = (E1_2 — Eg_1) /Eo—1 goes to 0 which is
a problem since gate operations tuned to resonance with some transition (say Ey_1) can
easily excite other transitions as well. Furthermore, it puts an upper bound on the speed
of gate operations. Fortunately, the anharmonicity scales only as a,, ~ —1/4/32E;/E¢
[Cot02], i.e., a weak power law compared to the exponential suppression of the charge
sensitivity. Hence there is an optimal range for the ratio E;/F¢.

The eigenstates |m) of the transmon can also be obtained by solving Eq. in
the charge representation. As the Josephson term couples only adjacent charge states
(see Eq. (2.16)), the problem amounts to diagonalizing a tridiagonal matrix. One finds
that for n, = 0, the first transmon eigenstates |m) are symmetric and antisymmetric
superpositions of the first charge states |n) € {|=5),...,|5)} |Gaml13| (for n, # 0, the
distribution is shifted accordingly). Using a transmon as a qubit thus also changes the
definition of the computational states |0) and |1). Furthermore, due to the reduced
anharmonicity, a two-level approximation might not necessarily be possible and higher
transmon levels have to be taken into account. On the other hand, this also provides
additional degrees of freedom in the realization of qubit gates |[GCS15]. We will discuss
these issues in more detail in section (.2
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2.3. Circuit QED

2.3.2. Transmission line resonator

While the transmon plays the role of the tunable atom in circuit QED, the cavity is

represented by a transmission line resonator. This resonator can be described by a simple

LC-circuit [BHW+04; WSB-+04] labeled by L, and C, in Fig. [2.7 The reason that this

circuit functions as a single-mode cavity can be seen by examining the circuit Hamiltonian

according to section [2.2} The capacitive branch produces the kinetic energy term and the

inductive branch yields the potential energy such that we find
Qz o2

+

H =
2C, ' 21,

(2.50)

This is a simple harmonic oscillator that can be diagonalized analogously to the mechan-
ical case, i.e. (up to a constant)

H = hwad'a | (2.51)

where w, = 1/4/L,C, is the mode’s resonance frequency, and G and a' are the bosonic
operators. Since the excitations of the resonator are obviously of the electromagnetic
kind, they are actually photons. In many experiments, the circuit parameters are tuned
to microwave photons. Of course, in experiments there can be multiple modes populating
the cavity. This is an effect that experimentalists have to take special care of |Girll].

The only missing part of the architecture is the coupling between the transmon and
the resonator. This is mediated by the capacitor Cy in Fig. 2.7 When doing the full
circuit analysis [KYG+07], one finds that the interaction is given by

HRQSHCPB = hgﬁ(& + dT) y (252)

where ¢ is the coupling strength dependent on the circuit parameters. There is also
another intuitive way of understanding how this electric dipole coupling comes about
[Gam13|: Apart from the gate voltage, there is now the voltage V. across the LC-circuit
determining the offset charge n, in Eq. . Note that this voltage is not an external
parameter from a voltage source but an operator associated with the variables QT and @, .
From the charging term (7 — n,)?, we then get a linear contribution o AV,. Rewriting
V.  a+ af, we find again Eq. .

With the circuit QED architecture as an engineerable atom-light interaction, many
quantum optics scenarios such as Rabi splitting or the Purcell effect can be investigated.
For quantum computing applications, the cavities are useful for coherent control and
readout |[KYG+07]. This is done in the dispersive regime where the transmon’s transition
frequencies are much larger than the resonator’s frequency w,. Then microwave pulses
are used for qubit operations, and readout (in the sense of projective measurements) is
done by measuring a resonator frequency shift induced by the state of the qubit [Gam13].
In principle, this idea is not limited to one qubit; it has also been used for joint readout
of multiple qubits [MCG+07 Girll].

We will further study the circuit QED architecture in the two-qubit part of section [5.2]
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2. Superconducting qubits

2.4. State of the art

In the last few years, the superconducting qubit community has converged on imple-
mentations of the transmon qubit [Reil5| (cf. section and slight variations of it
[BKM+13|. With average gate lengths ~ 10 — 100ns and coherence times ~ 100 ps
[GCS15], the number of operations per qubit coherence has reached a very satisfactory
magnitude of about 10? — 10*. The time scale for single-shot readout at 99% fidelity
is converging to around a few 100ns [Reil)|. Single-qubit gate fidelities of nearly 100%
have been reported [BKM+14; [SBM+16|, and experimentalists work hard on pushing the
speed and the fidelity of two-qubit gates based on fixed-frequency transmons [SMC-+16]
and tunable transmons |[BKM+14; MG14|. Furthermore, the first quantum simulation of
molecular energies in the sense of Feynman’s vision [Fey82| without exponentially costly
precompilations has been shown [OBK+15].

Another important step is the realization of small error-correction protocols. The idea
of error-correction is to add redundancy by using more physical qubits to represent one
logical qubit such that the whole system can preserve its encoded state longer than the
individual components. It is actually the same concept that happens for classical codes
used in digital computer hardware. The qubit system must detect errors induced by the
environment by measuring a part of the redundancy without inferring the whole state
of the system since that would project it onto the measurement basis and thus extract
too much information. The protocols usually propose correction operations to undo
the error; however, in practice they are not carried out explicitly as these gates could
induce additional errors. Instead, the changes in the logical computational space are kept
track of to compensate for in future operations [BK15|. DiCarlo’s group from Delft has
presented bit-flip error detection on a linear five-qubit processor [RPH-+15|, and Martinis’
group at UCSB recently demonstrated a three-qubit state preservation by repetitive error
detection on a linear nine-qubit array [KBF+15|. However, for demonstration of full fault-
tolerance, both bit and phase flip errors on a state must be simultaneously detected. This
is currently pursued on a two-dimensional lattice implementing the (rotated) surface code,
which has been one of the most successful schemes so far [GCS15|. The group at IBM
has demonstrated such a surface code on a square lattice of four superconducting qubits
[CMS-+15; CSM+15| and on a five-qubit processor [TCM+16|, which can be publicly
accessed on the IBM cloud [IBM16].

An important step towards building useful quantum computer hardware is of course
the process of scaling up to larger processors. This process is becoming more and more an
engineering challenge [BK15|. Also, techniques from computer science such as machine
learning and big data schemes will find their way into the controlling and calibrating
systems |Reil5|. Even though a full-scale universal gate-model quantum computer still

lies far in the future, systems of about O(100) qubits are considered to be well within
reach [GCS15].
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3. Physical models

In this thesis, we basically examine two models that have been of significant importance
in the context of quantum computing. Each model is characterized by its Hamiltonian
which has been chosen to support a big range of parameters, such that a wide class
of systems occurring in experimental setups can be realized and investigated with the
simulation software.

3.1. The CPB model

The first model addresses quantum computing devices based on superconducting circuits.
As outlined in chapter [2 these circuits contain Josephson junctions providing the pos-
sibility to store Cooper pairs in Cooper pair boxes (CPBs). As this model comprises
Hamiltonians containing CPBs and different ways of coupling them, we will refer to it as
the CPB model. Its intended purpose is to model various hardware realizations based on
CPB qubits such as charge qubits and transmon qubits.

The Hamiltonian consists of 4 separate contributions. The first contains m + 1 Cooper
pair boxes described by the Hamiltonian given in Eq. . The other three each im-
plement one way of coupling them, namely via a transmission line resonator as described
in section [2.3.2] (we set the reduced Planck constant i = 1 from now on), through an
additional large Josephson junction as shown in section [2.2.3] or capacitively by the elec-
tronic interaction of their charges. In total, the complete model Hamiltonian with all
parameters reads

H = Hcpp + Hpes + Hyc + Hee (3.1)
where
Hepp = Xm: (ECz(ﬁz — ngi)2 — Ej; cos @i) (Cooper pair box qubits)
i=0
Hpee = wyala + i ging(a + al) (Transmission line resonator)
i=0
Hyc = — f: Ejcicos (9o — @i + ¢5F) (Josephson-inductive coupling)

=1
Heoe = Z Ecicj (i = ngq ;) (A —néio;)  (Capacitive coupling)
0<i<yj<m

Note that all parameters can in principle be time-dependent. For Hcpg, the parameters
are the charging energies E¢;, the Josephson energies £ ;;, and the voltage-induced charge
offsets ng. While the charging energies are usually given by the experimental setup,
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3. Physical models

the Josephson energies can in principle be tuned through an external magnetic flux (cf.
Eq. ) The offsets n,4 can be controlled via external voltages. The first coupling
Hges has the resonator’s eigenfrequency w, and the coupling constants g; as parameters.
The second coupling H ;¢ is defined by the energy scales E;¢; and additional magnetic
fluxes threading the loops ¢$*. Note that unlike the circuit in section [2.2.3] the model
supports different external fluxes for each of the m CPB qubits. The last coupling Hoc
is parametrized by the energies E¢; ¢; and (potentially different) charge offsets né{%]

In the simulation, the three coupling Hamiltonians can of course be individually switched
on or off depending on the underlying hardware, as using all of them simultaneously might
not model a meaningful hardware realization. To model the system given by the Hamil-
tonian in Eq. (2.48), for instance, we only need the couplings H,c and Hee.

To gain a deeper understanding of the effect of the different terms in Eq. , we com-
pute the action of H on a basis state 1)) = |ng - - - n,,,k). Each operator in H is either di-
agonal w.r.t. this basis, or maps |1)) onto some superposition of states |¢') = |ny - - n! k')
where at most two of the indices n{---n,,k’ differ by one from those in |ng-- - np,k).
Therefore, we adopt the notation |---n; £ 1---) to indicate only those identifiers that
have changed w.r.t. |¢). Consequently, |¢)) is denoted by |---). Hence the action of
H = Hepg + Hpes + Hyc + Hoc on |¢) is

H|¢>:Z(ECi(ni_ngi)2|"'>_ 2J loomg 1) — 2J |---ni—1---)>
1=0

+wrk|--->+z(gmi\/m---k:—l)+gini\/k:+1|---k:—l—1)>
i=0

- ECz‘iex E(Jz‘ —ipeT
_i_Z(_%ed)z |n0_1...ni+1...>_%e ¢z ’n0+1...ni_1...>>
=1

+ Z Eeic; (”z - néz‘,Cj) (”j - ngi,cj) ) (3.2)

0<i<j<m

Each term can be physically understood in this basis: The first line represents the charging
energy associated with |- --) and the tunneling interaction which can increase or decrease
the corresponding relative number difference of Cooper pairs on each CPB. The second
line first attaches the resonator’s associated photon energy to the state, and furthermore
induces changes in the number of photons dependent on the number of charges on each
CPB. The third line has a nice interpretation w.r.t. Fig. The coupling Josephson
junctions JC'% are in fact tunneling contacts between the Cooper pairs at the nodes ®;
and ®g, so the corresponding terms in the Hamiltonian represent the tunneling of single
Cooper pairs from ®; to ®y. Thereby, the magnetic fluxes ¢$* control the phases. The last
line is diagonal in the charge basis, so it just associates the proper capacitive interaction
energy with the state.

The Hilbert space that the model lives in is a tensor product of the m + 1 Hilbert

spaces spanned by the charge states of each CPB, and the resonator’s Hilbert space given
by the photonic Fock space, i.e.

Hoo = (@ span{|n) : n € Z}) @ span{|k) : k € No} . (3.3)

1=0
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3.1. The CPB model

For the simulation, we truncate the Hilbert space to a finite-dimensional subspace cho-
sen large enough such that all essential dynamics is still contained and the results are
independent of these dimensions. This means that we restrict the number states to
ng € {—No,...,No} and n; € {—=N;,..., N;} Cooper pairs in each box (usually we set
Ny =...=N,,=N) and k € {0,..., N,,} photons in the resonator, i.e.

H = span{|ng) |n1) - - [nm) k) i n; € {=N;y ..., Ni} k€ {0,..., Npn}} . (3.4)

This process of truncation works by projecting H onto H, i.e., we simply omit all terms
in Eq. that lie outside H. Note that mathematically, there are some subtleties in
keeping the representation of H in terms of cos;, @ and a'. One example is that we
cannot have commutation relations such as [&, dq = T Res anymore, since the commutator
has trace 0 while the identity 1ges has trace N,, + 1. However, as this is physically
irrelevant for the simulation, we spare ourselves additional complications in the notation
and just keep the representation of H in Eq. (3.1).
In the truncated space H, an arbitrary state |¥) € H can be represented as

O) = Y gk IR0 k) (3.5)

ng--nmk

where the sum ranges over the finite number of indices determined by Eq. . We
thus have to keep track of all the complex coefficients ay,....,.r. Mathematically, this
object is a complex tensor of rank m + 2 where each index ranges over a variable set of
integers. Storing and handling this object efficiently on a computer is a nontrivial task
since the program must be written generically for any value of m. As the computer’s
memory is a one-dimensional array, the coefficients must eventually be addressed by a
single index. This works by first shifting each index n; by N; into a range of non-negative
values n; + N; € {0,...,2N;} and then introducing a one-dimensional index idx given by

idx = (ng + No)So + -+ + (N + Np) S + k. (3.6)

Here the numbers S; are the so-called strides that have the property that idx — idx+.5;
corresponds to n; +— n; + 1. They can be computed analytically by taking the product
of the extents of all lower dimensions, ie., S; = (2N;41 + 1)+ (2N, + 1)(NVpn + 1).
Consequently, the stride of the photon index k would be S,,,; = 1, and the stride of
the coupling junction index ng is Sy = (2N7 + 1) - -+ (2N, + 1)(Npn + 1). Following this
scheme, the highest stride S_; would thus give the total number of complex coefficients
in the tensor. The strides further obey the strict ordering relation Sy > --- > S, > 1 and
we have S; = (2N;11 + 1)S;41 for i < m. Inverting Eq. , we can retrieve the indices
(no, ..., Mum, k) from idx by using integer division (div) and the modulo operation (mod)
given by taking the remainder of the integer division. For instance, the subindex n; + IV;
can be computed from idx by n; + N; = (idx mod S; 1) div S;, and the corresponding
charge number is given by subtracting /N; from this number.
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3. Physical models

3.2. The spin model

The second model commonly serves as the basic model to theoretically examine gate-
based quantum computation and quantum algorithms |[NC11|. It is set in a product
space H = span{|0) , |1>}®N of simple two-level systems, the qubits. A quantum computer
that is described within this space represents an ideal quantum computer. In analytical
studies, many physical setups (like the Cooper pair box in Eq. ) are at some point
projected onto such two-level systems to examine their potential w.r.t. applications of
quantum computing (see also Egs. and ) One purpose of this second
model is thus to test such TLAs for the CPB model defined in the previous section.

A prominent setup is given by single spin-1/2 particles, which naturally provide a
set of two-level systems. In that sense, a nuclear magnetic resonance (NMR) quantum
computer with nuclear spins provides nearly ideal qubits. Equipped with an arbitrary
two-particle interaction, this makes up the second model which we therefore call the spin
model. It is characterized by its Hamiltonian

H=—S 870,530,
(3:k) J
N

== Y N umsese >0 N nese (3.7)

1<j<k<N a=zy,z j=1 a=zy,z

where S§ = o /2 is the spin operator defined by the Pauli matrices o (o € {z,y, 2})
acting on the j™ two-level subsystem. 5_'; denotes the corresponding vector of the three

spin operators. In terms of spins, the vector Ej = (h;”, h?, hj) € R3 represents a magnetic

field on the j* site and the coupling constants Ji in Jjp = diag(Jfk, sz?’k, fk) denote the
exchange coupling between spin j and k. The sum in Eq. (3.7) is restricted to nearest-

neighbor interaction on a one-dimensional lattice, implied by the notation (j, k).

An arbitrary state |¥) € H can be expressed in the computational basis as

2N _1
|\Ij> = Z Ajn_1--jo |jN71 o ]0> = Z an |n> : (3'8)
JognN-1=0,1 n=0

In this notation, we identify the computational states |jy_1 - - jo) = |n) where jy_1 -+ jo
denotes the integer n in binary representation, i.e., n = jy_12V "1 + - 4+ 5,2°. As in the
CPB model (see Eq. ), we need to store and keep track of the 2V complex coefficients
a, when we study the state |¥). However, since the binary digits jy_1,...,Jjo can only
be either 0 or 1, this is not as involved as in the CPB model. We simply use a linear
array of size 2" and obtain the index j; using the binary conjunction and from Boolean
logic, i.e., j; = (n and 2%). The computational state of the i*" spin (i = 1,..., N counted
from left to right) is then given by the binary value jy_;.

Gate-model quantum computing usually works by controlling the system’s parameters
Ej and J7 and then letting the system undergo a unitary time evolution U = e~ (in
the simplified case of time-independent parameters). The transformation U then corre-
sponds to the gate that is being applied to the qubits. Our system given by Eq. can

thus be used to implement single-qubit gates using the fields ﬁj and two-qubit gates using
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3.2. The spin model

the exchange couplings Jj;. Remarkably, the special case J]Z.’k = Jj;, = 0 corresponding to
the Ising spin model is already universal for quantum computing [L1093|. In fact, it can
be shown that any system providing single-qubit rotations and one nontrivial two-qubit
gate can be used to implement all unitary operations in successive sequences of time
evolutions [DiV95; DBK+00|. Nontrivial in that context means that the two-qubit gate
needs to be capable of mapping product states |¢)) ® |¢) to entangled states such that
they cannot be expressed as product states anymore. In the set of all two-level unitaries,
almost all matrices have this property |[DBE95|. Famous examples of such gates are the
controlled-not and the controlled-phase gate

CNOT : [i)|5) ~— |i)]i xor ) (3.9)
CPHASE : [i)|j) — (=1)"™7 i) |5) (3.10)

which both map the product state |++) where |+) := (|0) & [1))/V/2 to a maximally
entangled state. Of course, the set of well implementable nontrivial two-qubit gates is
ultimately dictated by the underlying physical hardware.

For some instances of the model in Eq. and corresponding two-level approximations
that can be represented by Eq. , we will explicitly examine and compare various
realizations of quantum gates in chapter 5] Before we can do that, however, we need to
focus on the program and the algorithms to actually simulate the hardware given by the
above Hamiltonians, which is the purpose of the following chapter.
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4. Simulation software

A major part of this thesis lies in the development of a software application and the
implementation of suitable algorithms to simulate and investigate the physical models
introduced in the previous chapter. To run the simulations for different models and ex-
amine the influence of various device parameters, the program offers a graphical user
interface and visualizations of the results as three-dimensional animations and suitable
time-evolution plots. A short description and some screenshots of the interface are pre-
sented in appendix [F]

As the models in chapter 3| are expressed in terms of a Hamiltonian, the simulation is
basically required to solve the TDSE given in Eq. for arbitrary initial states. For
this purpose, the program offers a choice of numerical algorithms that are either fast
or capable of making huge leaps in time. In the context of quantum computation, the
application further supports the specification of sequences of elementary gates through the
corresponding parameters in the Hamiltonian, thus emulating a means of programming
the hardware. For a given sequence of gates, the evolution of the initial state can be
visualized in terms of three-dimensional arrows on the Bloch sphere or by means of the
probabilities to measure certain states in the Hilbert space. Last but not least, the
software framework provides a means of assessing effective Hamiltonians and gates that
rely on the interaction with additional degrees of freedom outside the computational
subspace.

In this chapter, we first review the numerical algorithms used to solve the TDSE,
following the presentation in [DMO06|. Then we establish the concrete implementation of
these algorithms for the physical models discussed in chapter [3] A precise evaluation of
the actions of all operators composing the Hamiltonians and their exponentials will prove
to be inevitable for this step. Subsequently, we present means to validate the correctness
of the implementations and measure the accuracy. After that, we will briefly outline how
the information for the visualization is obtained from the data. Finally, we describe the
method to examine effective evolutions in the computational subspace.

4.1. Numerical algorithms

The central goal of the numerical algorithms studied in this thesis is to solve the TDSE.
For a state |¥(t)) € H, it can be expressed as the partial differential equation (h = 1)

0
i V() = HO)[T(E) (4.1)

where the operator H(t) is the Hamiltonian of the system. In this abstract form, the
TDSE exposes only a derivative w.r.t. time; however the Hamiltonian can contain other
derivatives depending on the chosen representation. The problem at hand is to obtain
the state |U(t)) for a certain set of times ¢ from a given initial state |¥(0)). A standard
technique to solve the problem is to discretize the partial derivative w.r.t. time, and
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iterate the equation in time steps 7. For applications in quantum mechanics where the
norm of |W(t)) is conserved, however, a far more natural approach would be to consider
algorithms that preserve the unitarity of the time evolution by construction. With that
goal in mind, we express the formal solution to Eq. in terms of a unitary time
evolution operator:

V(1)) = U(t,0)|9(0)) (4.2)

where [BF04]

U0) =T, <e“of et ’) | (4.3)

The symbol 7; is the time-ordering symbol that indicates that in all terms in the series
expansion of the exponential, the product of Hamiltonians H (#')H (t") - - - must be ordered
so that ¢/ < t” < ... . Eventually, we are interested in not only the final state |¥(t)), but
also intermediate states in the evolution from 0 to . On a computer, the number of these
intermediate states can only be finite, so we have to divide the time evolution in discrete
time steps 7. It turns out that this requirement can be used to simplify Eq. (4.3). For
this purpose, we utilize a group property of U(t,0), namely

Ut0)=0(tt—7n)U({t—r1,t—27)---U(7,0) . (4.4)

By making 7 sufficiently small, we can achieve that the Hamiltonian does essentially
not change within one time step. Of course, we can adjust the time steps dynamically
depending on the properties of H; the essential idea is that we have to make sure that
at some time to, H(tg) and H(ty + 7) are well approximated by H(ty + 7/2). Then the
expression for the time evolution operator Eq. boils down to the simple version for
a time-independent Hamiltonian

U(to + T, to) = €_iTH(tO+%) . (45)

It is this expression that the algorithms developed in this thesis are based on. See also
[IDMH-+02| and, in particular, [DMO06] for a comprehensive survey of the algorithms and
a special focus on quantum computation using the spin model from section for appli-
cations in NMR quantum computing.

Note that the simulation is eventually carried out on a digital computer, so the states
|W(t)) will always be represented by a finite set of complex double-precision numbers.
Moreover, the Hamiltonian can be expressed as a finite matrix and the Hilbert space
is always finite-dimensional. Hence we have to truncate and discretize the system in
an appropriate way without changing the physics. This means that we need to make
sure that the obtained solution always agrees with the exact mathematical solution up
to some specified numerical precision. Due to the use of double-precision floating-point
arithmetic, this precision is always bounded from below by 15 decimal digits (the IEEE
754 double-precision format contains 52 binary digits for the mantissa [08]). Above this
bound, any algorithm is required to be able to go to arbitrary precision by refining the
discretization. We will check this requirement and some other theoretical validations for
the algorithms and models under consideration in section [4.2]
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4.1.1. Exact diagonalization

The most straightforward approach to obtain the unitary time evolution operator in
Eq. is to simply calculate it. This means, given the action of the Hamiltonian
on all of the D basis states (on the computer we have D = dimH < o0), we can
construct a complex matrix H of size D x D with each basis state’s image in the columns.
Since the Hamiltonian is Hermitian, it can be diagonalized and we can compute its
eigendecomposition H = VAVT. Here, V is a unitary matrix whose columns comprise
an orthonormal basis of H given by the complex eigenvectors of H, and A is a diagonal
matrix containing the corresponding real eigenvalues of H. The unitary time evolution
operator U = e~ (we set ty = 0 and H = H(t; + 7/2) in Eq. for simplicity) can
then be calculated via

U=ec ™ =ye Ayt (4.6)

where the exponential of the diagonal matrix A can just be taken component-wise. The
evolution of some state |¥) under U then amounts to two matrix-vector multiplications
and one component-wise multiplication with complex phases from A.

The advantage of this approach is that the complicated task of computing the eigen-
decomposition of H can be delegated to well-established high-performance linear algebra
libraries such as LAPACK |[ABB+99] and the Eigen C++ template library |GJ10]|. For
a complex Hermitian matrix H, most of the algorithms can be divided into three stages:

(a) Reduction to tridiagonal form T = QTHQ using similarity transformations @, thus
preserving the spectrum of H

(b) Tridiagonal eigensolver T'Z = ZA where Z contains the eigenvectors of T" and A
the eigenvalues of T' and H

(c) Backtransformation of the eigenvectors V' = QZ to obtain the eigenvectors of H
from those of T'

The heart of the algorithms lies in the second step, i.e., the tridiagonal eigensolver. One
of the most efficient methods to do this is called Multiple Relatively Robust Representa-
tions (MR?) which runs in O(D?) [DMP+07].

However, this approach does not exploit many of the specific features of the Hamilto-
nian. For the comparatively large Hilbert space of the CPB model (see Eq. (3.4)), the
full diagonalization is only feasible for smaller systems where the full eigenproblem can
still be solved. Since the other two algorithms presented in the next sections are specifi-
cally tailored to the purpose of computing the time evolution of | W), they are still orders of
magnitude faster for practical purposes. In any case, the exact diagonalization approach
is an essential tool to check the correctness of the other algorithms.

4.1.2. Suzuki-Trotter product-formula algorithm

A class of efficient algorithms that inherently preserve the unitarity of the time evolu-
tion operator U is based on systematic product decompositions of U into simpler unitary
operations. Since all matrices in the decomposition are unitary, the algorithms are un-
conditionally stable. The framework has been presented and discussed in [DeR87|, along
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with applications to prominent physical systems and many rigorous statements about the
character of the algorithms.

The central idea is to decompose the Hamiltonian into K Hermitian matrices H =
Zle H,, such that the exponentials e="* are easy to compute. The choice of basis
to represent the Hamiltonian is crucial for this step. We then approximate the time
evolution operator from Eq. for the time-independent Hamiltonian H = Zszl H,

U(r) = e~rrtt+Hx) (4.7)
by a product of K simple unitary matrices

Uy (1) = e gmrHr (4.8)
The Lie-Trotter-Suzuki product-formula [SMK77|

U(r) = lim U,(Z)" (4.9)
m—0o0
already suggests that this decomposition might be a good approximation if 7 is sufficiently
small. In fact, by expanding the exponentials in Eq. into a series and collecting all
terms up to first order in 7 (which essentially constitute H), we see that U, is a proper
first-order approximation in 7. This means that we have

HU(T) - Ul<7')HF < const - 7% | (4.10)

where ||| denotes the Frobenius norm (see appendix [C) and the constant can be ana-
lytically expressed in terms of the commutators of different Hy [DeR87|.

The nice thing of the product-formula framework is that the accuracy of the approx-
imation to U(7) can be systematically improved at almost no additional programming
effort: Once the first-order approximation Ul(r) has been implemented, we can obtain a
second-order and a fourth-order approximation by using [DMO06|

02(7) f(_%) ~1(%) (4.11a)
Us(1) == Us(ar) Us(ar) Us((1 — 4a)7) Uy(at) Us(ar) | (4.11Db)

where a = 1/ (4 — 41/ 3). For these expressions, there are rigorous bounds on the local
error [DeR87], i.e.

HU(T) - [72(7')HF < const - 72 (4.12a)
HU(T) — U4(T)HF < const-7° (4.12b)

according to the order of the approximation. In principle, this process can be continued
to obtain even higher-order approximations |[Suz91|. However, in most cases Eq.
and Eq. suffice to find the mathematical solution to arbitrary precision.

Using the actual implementation, we can in fact verify the local error bounds in
Egs. (1.10), (4.12a)), and using the following relation: Let ¢(7) = U, (7)¢(0)
and Yexact(7) = U(7)1(0) denote the D-dimensional complex vectors obtained from the
time evolution. By computing the Euclidean norm (see appendix of their difference,
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we obtain for n € {1,2,4}

[9() = esaee D) < [0(r) = U [0

1
< const - 7", (4.13)

This bound will be investigated in section [4.2] Note that this expression contains the
bare complex coefficients and not some fidelity based on the overlap of the states. Hence
the algorithm also produces the correct global phases. In practice, we see that even when
the approximation Un(T) is only first- or second-order, the difference comes from some
global phases such that the actual fidelity of the states is much better. To see whether a
lesser approximation still suffices, we only have to check if the expectation values under
consideration numerically remain the same after decreasing the order.

Due to the simplicity of dynamically adjusting the algorithm’s accuracy without much
computational effort, the product-formula approach is especially suited for efficient high-
resolution simulations. For the CPB model, e.g., it is no problem to go to sub-picoseconds
while the average gate times are on the order of 10 — 100 nanoseconds. The Chebyshev
algorithm discussed in the next section can in turn be used to make huge leaps in time
at high accuracy, so both methods complement each other well.

We now proceed to construct the particular decompositions of the Hamiltonians of the

CPB model and the spin model from Eq. (3.1)) and Eq. (3.7)), respectively.

CPB model

As we want the simulation to provide the option of using only a selected combination of
the qubit couplings Hges, Hjc, and Hqc, the first level of decomposition lies in the four
Hamiltonians in Eq. (3.1)). We discuss each of them separately and summarize the final
decomposition in the end.

(CPB) For the CPB Hamiltonian Hcpp, the first thing to note is that the differ-
ent Cooper pair box qubits all commute, so we define Hepg = >, Hipp with each
Hipg = Eci(n; — ng;)* — Ey; cos ;. From Eq. (3.2), we find that in the chosen basis of
charge states |n); on this part of the Hilbert space, each term can be represented by a
tridiagonal matrix

‘*NZ>Z [—N; + 1), e [N; — 1), [N ),
E'N/2  —Ej
] _EJ’i EI,NZ.+1
HZCPB = c. . I (414)
E?\fifl _}EJi
—FEy; E}VZ/2

where

(4.15)

n

o 2Eci(n —ng)* (n=—N;orn=N;)
| Eci(n —ng)?  (otherwise)
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The additional factor of 2 in the definition of £’ y, and Ej; is only for notational con-
venience in the following decomposition. By analogy with the particle moving in one
dimension in [DeR87|, we write this matrix as a sum of two block-diagonal matrices

[n); s In+ 1), [N); [—N),; [n); s In+ 1),
0
Hipg = Hepp + T i . (4.16)
. CPB
0
where

|”>z In+1),

in o ELJ2  —En/2
H = n ek . 4.17
e <—Eh/2 E%+1/2> 1

We label the first matrix in Eq. even and the second matrix odd since for each
of the contained 2 x 2 submatrices, n + V; is either even or odd. For the corresponding
time evolution Ué‘l’fg/ °dd"we can then apply the matrix exponential of each 2 x 2 block
separately. The only approximation lies in the decomposition corresponding to Eq.
as within one even/odd group, all submatrices act on different two-dimensional subspaces
and thus commute. By using the algebraic analog to Euler’s formula for the Pauli matrices

(see appendix @, we obtain for the matrix exponential

e7orn 6_%(ER+EWH) (COS(UZ%‘” SZirferil)n@T) COS(UZT)%—l—S;i_(f;J;)n(vT)) , (4.18)
2v 4v

where AE = E!—FE! and v = /AE? + 4E73, /4. Note that in this case, all global phases
of the transformations must be included in the algorithm since they become relative
phases on the total Hilbert space.

So we only have to implement 2 x 2 transformations on the complex coefficients of the
tensor in Eq. (3.5). This means that for a certain set of indices (idx,idx’) given by
Eq. , we have to transform the coefficients (ai4x, @iqx>). For the matrix in Eq. ,
this has to be done for each idx with n; = n, and the second index corresponding to
n; =n+ 1 is given by idx’ = idx + 5;.

(Res) The resonator Hamiltonian Hges in Eq. (3.1)) consists of two parts, namely the res-

onator itself and its coupling to the qubits. The resonator term w,afa = fjﬁg kw, [K)E|gos
is diagonal in the selected basis, so the corresponding factor U3, := e~imwrdla in the prod-
uct decomposition of U just attaches a phase e77“r* to each aiq, with idx mod Ny, = k.

Each term in the second part of the Hamiltonian Hj., := g;n;(a+a)" couples |n), |k)g..
with the corresponding states for £ + 1 and k£ — 1, so it is tridiagonal in the subspace
spanned by the photon states |k)g... Hence we can apply the same decomposition into

even and odd block-diagonal matrices as in Eq. (4.16)). For fixed n, each 2 x 2 block is
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then given by

‘k>Res |k+ 1>R,es

Hi 2 gﬂl( o ) . (4.19)

The corresponding factor in the time evolution reads

i . c.os.(m) —isin(nT) : (4.20)
—isin(nT)  cos(nT)

where = vk + Lg;n. Again, within the total evolution US™™°™ each pair of two-
dimensional transformations commute so their specific order of evaluation does not mat-
ter.

(JC) For the terms in the Josephson-inductive coupling Hamiltonian Hyc = Y ;" Hic,
we obtain by expanding the cosines into exponentials and applying Eq. (2.15))

jo = —Ejcicos(¢o — @ ¢ (4.21)
E No—1 N;—
K3 i QX
=Y Z ( oo + 1o I+ 1nl; + 7 g + 1oy Inn + 11;)
no=—No n=—N;

The tricky thing is now that Hj is tridiagonal both in the |ng), part of the Hilbert space
and in the |n), part. Thus we have to extend the decomposition in Eq. , namely
into four matrices in which ng + Ny and n + N; are both even, both odd, or one even and
the other odd. Inside the corresponding time evolution operators U;éen/ oddeven/odd 41 oce
matrices again consist of simple commuting two-level transformations, and we have for

some fixed ng and n:

[no)g In+1);  [no+ 1)),

i,no,n ® EJCi 0 €i¢fz
mno,n ®

with the corresponding time evolution

. i,nQ,n ° ) quzex I
R (It I (1.23)
ie"%i sin(y7) cos(xT)

where x = E;¢;/2. Compared to the CPB part, this matrix now transforms all the coef-
ficients (@igxts,, Giaxts,) for each idx with fixed ng and n; = n.

(CC) The final term is the capacitive coupling Hoc. As it is already diagonal in the

charge states, its effect in the time evolution Ugc is similar to Ug,, in that it just adds
phases to each coefficient of |¥). This means that it maps

—itEc; oi(ni—nL. L )(n;—nk. .
Asax — € iTEci,cj(ni nchcj)(n] nchcj)aidx (424)

for each idx of the linearized tensor of coeflicients.
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In summary, the total first-order decomposition of U = e~ reads
le — Ué}% 8(113C113 URes Uﬁ\ézn ﬁ(é;i even even Ueven ,odd Uodd ,even Uodd ,odd UCC ’ ( 4.9 5)
with
In); In+1),
even/odd —irHYD in E: /2 _EJ’L/Z
Ucpn e TCPB, Hepg =( 2 :
H H —Esi/2 Eni./2
n+N even/odd
Ube = €770 ala =k [k)kln,
. ph 1 ‘k>Res |k + 1>Res
Vi dd — Lk ik ® 1
e | N I T T
=On=—N k even/odd

m  No—1 Ino)g In+ 1),  |no+1)g(n),

preven/odd.even/odd _ H H H irHGO"  ppimon o Buci 0 el
JC Y JC - 2 eiiqﬁfz 0

i=1 ng=—Np n=-—N,
no+No n+N
even/odd even/odd

Uce = H e*iTECi,Cj(ﬁi*”éi,c]')(ﬁj*”gi,cj') . Ny = Z n|n><n|2

0<i<j<m n=—N;

Except for the transformation Ujc, all factors inside each unitary transformation in
Eq. commute and can be carried out in an arbitrary order without compromis-
ing the accuracy. Thus the number of approximations used in the product decomposition
is not so high. Moreover, even though the model looks quite complex, it basically only
requires unary and binary transformations on the coefficients ajq, from Eq. . Nev-
ertheless, in the actual implementation, there are many things that can go wrong w.r.t.
ordering and indexing. Therefore we will check and compare all implementations with
the exact diagonalization in section [4.2]

Spin model

For the spin Hamiltonian in Eq. (3.7)), the first step is to decompose H into single-qubit
and two-qubit terms. As the single-qubit terms in — ) ; Iy -5 for different j all commute,
we have the exact relation

N -
i’T;hj-Sj N e

e =1 :He”hj'gf . (4.26)

Each factor in the product acts only on the two-dimensional subspace H; = span{|0); , [1),}

of the total Hilbert space H = ®;V:1 H;. In this subspace, the matrix exponential can

42



4.1. Numerical algorithms

again be evaluated analytically (cf. appendix @ The result is

‘0>j |1>j
giriy 8 o ctishi /by is(hS + BY) /Ry (4.27)
is(hf —h¥)/h;  c—ishi/h; 7

where h; = ||EJH is the Euclidean norm of ﬁj, ¢ = cos(th;/2), and s = sin(7h;/2).
These unitary transformations are not very hard to implement: For a given state |¥)
represented by the 2V complex coefficients a,, as defined in Eq. (3.8), we have to loop

over all n € {0,...,2Y — 1} with jy_; = 0 and transform the coefficients a..... and a.....
according to this matrix.
For the two-qubit terms — > ika 655 Sk, there are two obvious decompositions. One is

the pair decomposition defined by decomposing the sum >, <jk<N and the other is the
XYZ decomposition defined by decomposing the sum Za:%yaz. In this work, we make use
of the pair decomposition; see [DMO6| for details regarding the XYZ decomposition. Each
term in the pair decomposition produces exponentials of i7 ) J 655 Sk which only act on
a four-dimensional subspace spanned by {|0), [0);,...,|1), [1);}. Moreover, they couple
only two of these states such that they effectively amount to two 2 x 2 transformations.
By analogy with Eq. , we can work out each of them analytically, yielding

10}, 10) ; 10}k 11D 1)1 10), Vi 11);

€' cos br 0 0 1€%T sin br
. o gaga e —iaT s —1aT o
om0 5SSy 2 0 e coser  se” s T 0 ’ (4.28)
0 e " siner e " coscr 0
1€"7 sin bt 0 0 €7 cos bt

where a = J5 /4, b = (J5;, — J4) /4, and ¢ = (J5, + J;) /4. These transformations can be
implemented in the same manner as the single-qubit transformations: We have to loop
over all n € {0,...,2Y — 1} with jy_; =0 and jy_j = 0, and for each we transform the
coefficients (a...q...0..., @...1..1...) and (@...q...1..., @...1..¢...) accordingly.

Hence the total first-order decomposition U; of U = e~ in terms of Eq. reads

N
U, = H et 20 J5kST SR H emhi'Si (4.29)

1<j<k<N j=1

As with the CPB decomposition in Eq. (4.25), the specific order of the terms inside
each product is not relevant for the approximation itself; it can be chosen freely so as to

reach the maximum execution speed using vectorization and parallelization techniques as
described in [DMD-+07].

4.1.3. Chebyshev polynomial algorithm

A naive alternative approach to calculate the exponential in the time evolution operator
U = e~ would be to use its Taylor expansion and simply truncate the sum. However,
this approach exhibits very unsatisfactory numerical instabilities as vividly demonstrated
in [MLO3]. A much more attractive way would be to use a polynomial expansion of U in
terms of powers of H, in which high-order terms are exponentially suppressed. A finite
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number of terms would then suffice to make the approximation numerically exact [TK84].

Fortunately, there is an expansion of the exponential in terms of Chebyshev polynomials
Tr(x) = cos(k arccos x) with coefficients given by integer-order Bessel functions Ji(z) that
have exactly this property, namely Ji(z) ~ (£)*/v2rk o< 2F/E*1/2 for k> 1 [AS64].
The expansion for z € [—1, 1] reads |[AS64]

e = Jo(—2) + 2 iFJi(=2) Tu(z) (4.30)

To turn this expression into a matrix-valued exponential for U, we make the following
considerations: As Tj(x) is a polynomial of order k£ in x and we strive for a polynomial
expansion in powers of H, we have to identify the variable x with the Hamiltonian H.
However, due to the domain of the Chebyshev polynomials being [—1, 1], we need to
rescale H such that its spectrum does not exceed this interval. As H is Hermitian, this
is most effectively done by using the spectral norm ||H||, corresponding to the largest
absolute eigenvalue of H (see appendix[C]). Hence the eigenvalues of H/||H ||, lie in [-1, 1]
as desired. Of course, we might not necessarily be able to compute ||H ||, exactly without
utilizing the costly step of diagonalizing H. Therefore, we will replace it by some easily
computable upper bound || H||, < h; that hopefully approximates the norm well enough.
Thus we set H := H/h, which can then take on the role of z in Eq. ([&30). The time
evolution operator then reads U = e~ which makes the variable z in Eq.
correspond to the rescaled time step Thy. As ||T,(H)||2 < 1, this value solely determines
the number K of how many terms of the sum over k£ we need to take into account.
For k > K, the Bessel function then numerically extinguishes all further contributions.
Therefore, it pays off to put enough effort into a tight estimation of h, because the
performance of the algorithm depends on it.
With these points in mind, the approximation to U reads

K
U= Jo(—Thy) + 2 Z Ji(—=Ths) Tkz([:[) ) (4.31)
k=1
where the i* has been absorbed in 7] i := i*T}. A nice feature of using the matrix-

valued extension of the Chebyshev polynomials is that we can use a forward recursion
relation to compute them, in which only the simple action of H on some state needs to
be implemented. Thus we find for the modified version T}, [PTV+07]

1 (k=0)
Tw(H) = < iH (k=1) . (4.32)
2l Ty (H) + Tyo(H) (k>2)

(Clearly, the bottleneck is the calculation of these functions applied to the evolving state
|¥), so we need to know the number of terms K in advance. For this purpose, we
have to examine the values of the Bessel functions Ji(—7hy) for all k. As they exhibit
oscillatory behavior along the way to zero for high k, the stable way is to use a downward
recursion from an asymptotic approximation with eventual renormalization [PTV-+07].
In doing so, we store all the values {Ji(—7hy)}x obtained along the way in one large array.
Then we can traverse this array from the end and fix the value of K as soon as we find
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the first coefficient that is not numerically zero. The only subtlety lies in choosing the
right starting point for the downward recursion such that K is really inside. Since this
algorithm takes practically no time compared to computing the Chebyshev polynomials
in Eq. (£.32)), we simply start at [20000 4 7h,| inspired by the asymptotic behavior of
Ji(z) mentioned above.

The advantage of the Chebyshev algorithm is that a single time step 7 can be made ar-
bitrarily large without influencing the accuracy, which complements the product-formula
algorithm discussed in the last section.

Since the performance of the Chebyshev algorithm depends on the number of terms K
and thus on the bound hy, and this is almost the only point where the implementations
of our two models differ, we now turn to deriving such bounds for the two Hamiltonians
in question.

CPB model

The central starting point for an upper bound on the norm of the Hamiltonian from
Eq. (3.1) is the triangle inequality ||A + B||, < [|All, + || B|l,- Thus we start from

1H]ly < |Hepslly + [[Hreslly + [ Hacll, + [[Heell, (4.33)

The next step is to find the norm of each of the basic constituents of the four Hamiltonians.
As the required operator norm yields the maximum absolute value that the operator can
attain on any state (see appendix , we can compute the following norms exactly:

R Nz + Ngq (ngi 2 0)
I = el {Ni_nm =0, g (4.342)
lcosp|l, =1 (4.34Db)
a'all, = N, (4.34c)

h
lall, = [|a™[l, = /llatally = /Non - (4.34d)

Note that it is essential to work in the truncated finite-dimensional Hilbert space given
in Eq. (3.4 since otherwise, some of the operators would be unbounded. Using these
expressions in conjunction with the triangle inequality results in

[ Hepsl[, < i (‘ECJ(NZ + |ngil)* + \EJJ) (4.35a)
i=0
Hiely < e N+ 3 20N/ N (4.350)
=0
[Hjcll, < f:|EJCi| (4.35¢)
i=1
1Heoll, Y 1Beiesl (Ni + [0 i) (N + Inicyl) - (4.35d)
0<i<j<m

Depending on the specific application, we can of course omit some of the three coupling
Hamiltonians if they are not needed. By summing up all the remaining terms on the
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right-hand side, we obtain the desired bound hy.

Spin model

By analogy with the CPB model, we compute an upper bound on the Hamiltonian using
the 2-norm (see appendix . We have HS;‘HQ =1/2 and HS;‘S,‘;‘HQ = 1/4 corresponding
to the largest absolute eigenvalue of the operators. Using the triangle inequality, we thus
obtain

1 el 1 e
1Hll, < 3D 1545 D _IRST (4.36)
(4,k) J
ae{]z,y,z} a€{zr,y,z}

4.2. Validation of the algorithms

When some physical process is simulated on a computer on the basis of some theory such
as quantum theory, two things have to be taken special care of: First, the algorithms
have to mathematically agree with the theory that is believed to explain the process.
This we have ensured by construction as we developed the algorithms from the basic
equation of the theory (i.e. the TDSE) presented in the last section. Second, the actual
implementations of the algorithms on a computer must be consistent with each other; i.e.
if they are made for the same purpose (such as solving the TDSE), they must not lead
to mutually contradictory results. This is the purpose of the present section.

To check this second requirement, we compare the different algorithms in terms of ac-
curacy. Moreover, we validate the mathematical statements regarding the accuracy of the
approximations such as the scaling of local errors. This has the advantage of providing
us with an estimation of the correct parameters we need to specify for the algorithms
(like the proper time step to solve the TDSE); and it will also tell us which algorithm is
suited best for which purpose.

The central quantity examined in this section is the local error. It is defined by the
error that is made after one single time step 7 and can be computed from

||77Z}(7—) - ,lvz)exact(T) ” ) (437)

where the symbol v stands for a vector of all complex coefficients a,, representing the state
in one of the chosen bases (see Eq. and Eq. (3.8))). 1(7) then corresponds to the
state obtained from the algorithm’s approximation t(7) = U(7)(0), and the reference
value Pexact (T) = €77H4)(0) comes from the diagonalization of the full Hamiltonian.

We study the dependence of the local error from Eq. for a range of different
single time steps 7. Each algorithm described in section is implemented for both the
CPB and the spin model. For the Suzuki product-formula algorithm, we further check the
scaling of the local error as proposed in Eq. for different orders of approximation,
namely n € {1,2,4}. This is done by fitting straight lines using logarithmic scales on
both axes and comparing the slope of the lines with n + 1. Besides being a confirmation
of the correctness of the implementation, it also helps in tracking down possible errors
made in the construction. This is because a higher order n would not show better scaling
w.r.t. 7 if not all terms in the U(7) — U, (7) vanished up to n'™* order.
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Given a bound on the local error in one time step, the global error made after m time
steps is then bounded by m times the local error [DeR87|. This helps in estimating the
proper time step when we are given the total duration of the simulated time evolution.
In practice, the time step can then be further increased as long as the expectation values
do not change, on the grounds that, as differences in global phases are measured as well
in Eq. , the actual fidelity of the states is usually much better.

4.2.1. CPB model

The accuracy for the CPB model is evaluated for two systems. The first is a “random”
system with all parameters in Eq. given by a random double-precision number in
[—1,1], and the second is a “realistic” system with parameters taken from the device
properties of typical CPB setups such as the one in [YWY+08|. This means that energy
scales over 27 are on the order of 10 — 100 GHz and charge offsets are around the sweet
spot at 0.5. The initial state is set to |0 - - 0) in the notation of Eq. (3.5), and the Hilbert
space in Eq. is defined by m = 2, Ny = 4,N; = Ny = 2, and Np, = 3 such that
full diagonalization can still be done in a reasonable amount of time. A system’s type is
denoted by titats where each t; € {0,1} determines which of the coupling Hamiltonians
is turned on, i.e., H = Hopg + t1 HRes + to Hjc + t3Hoo. All examined combinations show
the same qualitative behavior; some representative results are shown in Figs. {.IH4.1]

1T T T T O I I T
0.008 H Suzuki(l) =— A — Suzuki(l) =——

Suzuki(2 = -2+ Suzuki(2 /
= 0.007 H Suzuki(4) — 7 Lt L Suzuki(4) — /
£ 0.006 1| Chebyshev i < M Chebyshey ———

= £ —6 H Fit 1 (slope=1.99) —— -
50.005 - . =~ Fit 2 (slope=2.98
\Tf 0.004 L | | =8 H{ Fit 3 (slope—4.98 -
: S
0.003 | ' S 1
=0.002 . — 12 .
0.001 |- . ¥ -4 .
0 L L L 716 1 1 1
0 0.2 0.4 0.6 0.8 1 -2 —-1.5 -1 —0.5 0
Time step 7 log,o(7)

Figure 4.1.: The local error for a ran-
dom system of two uncoupled Cooper
pair boxes shows the proposed polynomial
scaling for different orders of the Suzuki
product-formula approach. The Cheby-
shev algorithm performs equally well for
all single time steps 7, so it is indepen-
dent of 7 as expected from the discussion

in section @

Figure 4.2.: A log-log plot of Fig. re-
veals the exponents of the local errors in
the Suzuki algorithm. For each order n €
{1,2,4}, they are around the expected
value of n 4+ 1 as derived in Eq. .
The Chebyshev algorithm always reaches
local errors close to machine precision, so
it is the most accurate one to make huge
time steps.
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Figure 4.3.: The local error for a system
with realistic device parameters (see also
section that has all couplings turned
on. The curves are qualitatively equal to
the case without coupling, but the time
scales have changed.
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Figure 4.4.: The behavior of the local er-
rors in logarithmic scales resembles the
one in Fig. 1.2l We can estimate that a
time step of 7 = 1073 is small enough to
achieve local errors between 10~% and 10~°
in the second-order Suzuki algorithm.

Comparing Fig. and Fig. [£.3] we see that the increase of the energy scales by a factor of
100 results in the corresponding reduction of the time steps 7. This makes of course sense
since it is the product of H and 7 that governs the approximation of the time evolution
operator. Judging from the results shown in Fig. [£.4] we conclude that a time step of
10~* to 1073 should be sufficient for the solution of the TDSE. In the realistic system,
this corresponds to sub-picoseconds. As mentioned above, the time step can in principle
be further increased as long as the results of the expectation values under consideration
are not affected. However, as the algorithms are fast enough, we will mainly stick to
7 = 10~*. If the energy scales in the Hamiltonian are given in GHz, this corresponds
to 0.1ps. On a notebook with an Intel Core i7 processor having a 6 MB cache and a
frequency of 2.1 GHz, 1000 time steps with the Suzuki algorithm take less than a second.
The Chebyshev algorithm performs a bit slower, but its time step can be dynamically
adjusted to the time-dependence of the parameters in the Hamiltonian. Of course, for
larger systems the exact diagonalization is not competitive.

4.2.2. Spin model

The spin model has been evaluated for various numbers of qubits. Exemplarily, we show
the local errors for a system of N = 8 qubits in Figs. [1.5] and .6, The corresponding
Hilbert space then has a dimension of D = 2% = 256, which is not yet a problem for the
full diagonalization algorithm.

From the results, we conclude that a solution of the TDSE with 7 = 0.01 is accurate
enough. A more detailed examination and comparison of the algorithms for the spin
model with applications of certain gate sequences is presented in [DMOG].

48



4.3. Visualization methods

03 [ T T T T T T T T T
—0.25 + .
=
s 02 F R

:
QT 0.15 |- .
3 0.1 F Suzuki(l) —— |7
= Suzuki(2

0.05 CS}u%)ukihﬁl —

hebyshev
0 L L 4——/ I I I I
0 02040608 1 1214 16 1.8 2
Time step T

Figure 4.5.: The local error for a spin sys-
tem of N = 8 qubits shows the same qual-
itative behavior as for the CPB model:
The Suzuki algorithms of order n grow as
7" (cf. Eq. (£.13)), whereas the Cheby-
shev algorithm stays close to machine pre-
cision for any single time step 7.
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Figure 4.6.: A log-log plot of Fig. con-
firms the expected growths of the local er-
rors in the Suzuki algorithms: The fits re-
produce the upper bound on the local er-
ror up to 2 decimal digits. For the Cheby-
shev algorithm, we find that the local er-
ror is again practically independent of 7

and close to machine precision.

4.3. Visualization methods

The simulation program provides two means of visualizing the solutions of the TDSE for
both diagnostic and educational purposes. Each uses the complex coefficients a,, obtained
from the solution to compute some physically meaningful quantity. For both the CPB
and the spin model, expectation values of local spin operators are computed to represent
each qubit as an animated arrow on the Bloch sphere, visualized in a three-dimensional
space. For the CPB model, expectation values of number and phase operators can be
monitored during the time evolution to see if and by how much the CPBs leak out of
their computational subspaces.

4.3.1. 3D visualization on the Bloch sphere

A simple qubit described by a pure state |¥) = ag |0) + a4 |1) is quite often geometrically
visualized as a three-dimensional arrow on a sphere S = {# € R3 : ||7|| = 1}. Its
coordinates can be computed from the expectation value of the spin operator S = 7/2,
where & = (0%, 0Y,07%) are the Pauli matrices. The calculation yields

B Re(ajay)
(5) = TIm(aga)
5(laol*~[as]?)

(4.38)

The nice thing about the Bloch sphere representation is that a unitary operation eioiS ¢
SU(2) can be interpreted as a rotation of (S) about the axis 7 € S, where « specifies
the angle according to the left-hand rule [NC11] (see also appendix [D]). Mathematically,

this is due to the Lie group of 2 x 2 special unitaries SU(2) being the universal covering
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group of the three-dimensional rotations SO(3) |[CF12].
For a product space of several qubits span{|0),]1)}*", the expectation values corre-
sponding to the spin operators Sy (k= 1,..., N) can be evaluated in the same manner,

so we obtain for a state |¥) = > aj,...iy |71 Jn)

Sey= > 1 I (@, g..j Gyt ) 2 : (4.39)
iy -\ (18700 =g, 1y [)
without ji

Of course, since the information contained in these vectors consists of 3N real numbers
whereas |U) is defined by 2% complex numbers, this representation does evidently not
yield the full information about |¥). Indeed, information about correlations between
different qubits is lost. The only thing remaining is that the presence of entanglement
usually makes the norm of the real vectors (§k> smaller than one. For instance, the
maximally entangled singlet state |¥~) = (|01) — |10))/v/2 has (S}) = (S,) = (0,0,0).
However, we can still interpret single-qubit rotations ek and intermediate steps in
two-qubit operations accordingly, and thus use the representation to study quantum
algorithms.

It should be mentioned that other ideas have been put forth to visualize multi-qubit
states and also correctly display information of entanglement, yet there is no known sim-
ple generalization of the intuitive Bloch sphere picture [NC11|. What is commonly done
for two-qubit systems is to display a state tomography of the corresponding density ma-
trix p € C***. In this representation, p is expanded in the Pauli basis {1, 0%, 0¥, 0%}®2
of Hermitian matrices. Due to the properties of p, the 16 expansion coefficients are al-
ways real and thus usually shown in bar diagrams. We will get back to this expansion
in section [4.4.1] Another interesting idea of visualizing two-qubit states on spheres has
been presented in [Rig09]|. For the purpose of this thesis, however, we stick to the simple
Bloch sphere representation.

The graphical user interface can be used to program a certain sequence of gates by spec-
ifying the corresponding parameters of the Hamiltonian. During the time evolution, the
program computes and stores the expectation values of the CPB states given in Eq.
and the spin states given in Eq. according to Eq. , possibly including a user-
specified change of basis. Afterwards, the motion of the arrows can be investigated in a
three-dimensional setting with the opportunity to step through individual gate sequences
and verify the programmed algorithm. The open source high-performance 3D engine
Irrlicht [GAC+05| was used to render the three-dimensional scene.

4.3.2. Monitoring the non-computational states

For a given sequence of gates for the CPB model, the application provides a means to
monitor the occupation of all energy levels in some user-specified basis. This is done by
animated bar diagrams that show the evolution of the probabilities to measure a specific
number of Cooper pairs on the qubit. If the computational states are given by the charge
states |0) and |1), for instance, it can be used to see whether the CPB leaks out of the
computational subspace.

For the state |U) given by Eq. (3.5), the probabilities are obtained from the expectation
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values of the corresponding projectors. A straightforward calculation yields

p(no) = (| (|no}nolg) [¥) = > |angen,kl’ (4.40a)
ny-nmk

p(n) = (O] (Jna)(nil,) [9) = > angemul? (4.40D)
Wit

p(k) = (U] (k) klges) [9) = D [angmpuil” (4.40¢)

1 i(no—mn *
p(0) = (¥| (loXoly) [¥) = No 11 Z e!(no=To)¢o Z ek Oiig-mmk - (4.40d)
nong ny--nmk

The last expression corresponds to the Fourier transform given in Eq. . Note that,
in the truncated finite-dimensional Hilbert space in Eq. (3.4)), this Fourier transform has
been replaced by its discrete counterpart. We will need this particular expression in the
analysis of the model corresponding to the Josephson-inductive coupling [YWY-+08|. The
population of photons in the cavity given by Eq. will be useful in the study of the
transmon quantum computer in section [5.2]

4.4. Effective Hamiltonians

Many systems proposed for quantum computing rely on additional degrees of freedom to
couple the qubits, such as the resonator in circuit QED setups (see section or the
additional Josephson junction mentioned in section [2.2.3] These degrees of freedom are
often described by a subspace of the complete Hilbert space. To examine the quantum
computing system theoretically, one needs to find a way to eliminate these degrees of
freedom such that a bare effective qubit-qubit interaction remains. This means that one
seeks a procedure to derive an effective Hamiltonian from the total Hamiltonian (prefer-
ably expressed in the spin space spanned by the Pauli matrices, such as Eq. (3.7))). This
can then be used to investigate the influence of external control parameters such as volt-
ages or magnetic fields, and to assess the system’s potential to realize multi-qubit gates.

Obviously, there are many more or less rigorous ways to derive such effective spin Hamil-
tonians. Some rely on simple Taylor expansions, and some make use of various kinds
of perturbation theory. A straightforward approach is to simply write down the partial
differential equations for each expansion coefficient of an arbitrary state, and extract the
effective Hamiltonian generating these equations to a desired order (cf. [Par06]). Other
common approaches include time-averaging |JJ07|, adiabatic-elimination [PRN+14], and
the Schrieffer-Wolff transformation [SW66|. This last method is a special version of degen-
erate perturbation theory. It is based on direct similarity transformations of the original
Hamiltonian, thereby diagonalizing the Hamiltonian to a desired order. The method has
been frequently applied to multi-qubit systems and there exist rigorous statements about
the precision and the range of validity of the effective Hamiltonians [BDL11].

One purpose of the present software is to examine and test such methods of obtain-

ing effective Hamiltonians. Fortunately, as we obtain the system’s time evolution by
solving the TDSE, we have access to the data set of the total density matrices {p(t)} for
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all times. By tracing out the additional degrees of freedom, we can obtain the reduced
density matrices in the computational subspace. Assuming that the subsystem can re-
ally be described by an effective Hamiltonian living in the subspace only, these reduced
matrices should more or less agree with the time evolution of the initial subsystem’s
state under an effective Hamiltonian H.g. Thus by fitting an arbitrary time-independent
Hamiltonian through unitary evolution to the data set of reduced density matrices, we
can assess whether such an effective Hamiltonian exists and to which degree the evolution
can be effectively described by it. Furthermore, we will obtain its expansion coefficients
in the basis of Pauli matrices. This procedure is described in detail in the next section,
followed by a brief outline of the measures used to estimate its success.

4.4.1. Procedure

We start from a bipartite system in some state |n1) ® |ng), where n; and ny enumerate
the states including the two-qubit subspace. It is coupled to an external system 0, whose
initial state is labeled |0),. This system can be one single unit such as a resonator or
another Josephson junction, or some greater entity such as a purifying system [NC11| or
an environment. So the initial density matrix of the compound system is given by

p(0) = [0)0ly @ p12(0) = [0)0]y @ [nan2)(nans| (4.41)

describing a pure state. In quantum theory, the total system undergoes a unitary time
evolution U = U(t,0), i.e.

p(t) = U (J0X0ly ® [ranafmina|) U (4.42)

All expectation values for local observables A = A, living only in the bipartite subsystem
can then be computed through the reduced density matrix pi2(t) = Tro p(t), since we
have (A)(t) = Tr(p(t)A) = Tri2((Tro p(t))A) = Triz(p12(t)A). The time evolution of this

reduced density matrix can always be written as [NC11|

pra(t) = Tro p(t) = > M¥ p1o(0) Miy" = " M7 Ingno)nang| MiyT (4.43)
no

no

where My = o(no| U |0), are the so-called Kraus operators satisfying > MM =
[KBD-+83|. Here, ny enumerates all states of the additional system. From Eq. ,
we can see that the final state of the bipartite system is, in general, a mixed state. In
fact, it is only pure if the evolution of the subsystem is unitary, i.e., there is an effective
unitary transformation Uy such that MY, = Ueg and ]\41”207é0 = 0. However, in many
common cases in quantum information technology, the coupling to system 0 is weak or
the duration of the evolution is short, and the reduced system remains in an almost pure
state (meaning that the purity Tr p;»(t)? < 1). Alternatively, the system can be entangled
during the evolution such that it looks mixed in the reduced system (e.g. Tr p12(#)? < 1 for
some t € (0,t)), but it might eventually return to a pure state in either reduced system.
Then we can still find an approximately unitary operator Usg ~ MY,, or equivalently
an approximately Hermitian Hamiltonian Hg, describing the system’s effective evolution
between the states pi2(t') for which Trpo(#')*> = 1. Note that the purity of the total
density matrix is always Tr p(£)? = 1 since the total time evolution given by U is unitary.
If the object mediating the coupling between the qubits is not an explicit part of the
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Hilbert space (such as a capacitor or an interaction through higher non-computational
levels), the procedure can of course still be applied to assess effective Hamiltonians. In
that case, we simply omit taking the trace over system 0 after the time evolution.

We obtain the effective Hamiltonian from a nonlinear optimization using the data gen-
erated during the time evolution. If the fit succeeds (see the next section for validation
measures) and the effective Hamiltonian is Hermitian, we know that such an effective
description exists.

Since we are looking for an effective evolution in the two-qubit subspace (ultimately to
find and check proposals for various two-qubit gates), we first project the reduced density
matrices onto the two-qubit subspace. If this subspace corresponds to ni,ns € {0,1},
this means that we compute the projection

1
P = Y Immefnane| pro(t) [nyn)ning| (4.44)

! !
ni,nz,n,ne=0

Of course, if the computational states are defined in another basis, we need to adjust the
projectors accordingly. Hence, if an effective unitary evolution in the two-qubit subsystem
exists, there is a solution to the set of equations

PPt 4 ) = e Tl d) g () i tlenth)) (4.45)

for various times ¢ and different initial states p12(0). In Eq. , hi; are parame-
ters defining the effective Hamiltonian. Since pj5"" describes two qubits, the space
of Hamiltonians has 16 dimensions, so we have to find 16 such parameters. For con-
venience, we define these parameters from the expansion of H.g in the Pauli basis

(6 =1,0' = 0% 0% = 0¥,0% = 0%)%%

3
Heff = Z h” O'i & O'j . (446)

1,J=0

This choice of basis has the advantage that we can immediately infer the induced two-
qubit gate from h;;. Furthermore, for a Hermitian Hamiltonian, we know that h;; € R.
By allowing for complex coefficients in the fit, the magnitude of the imaginary parts of
hi; tells us whether the evolution in the two-qubit subspace was really unitary or if there
has been decoherence or leakage into other levels. This reflects the fact that the final

state in Eq. (4.43) had a small purity.

So the nonlinear optimization problem solved on the computer is given by the mini-
mization procedure

min [Y = F({hs} X7 . (147
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where
Py (7) Przpiny (0)
Y — y X. - 9
gt (mr) iz ((m = 1)7)
e—imHeg({hi}) P§3T£1>(0) e'mHefi({hij})
F({hi;},X) = :

e~ i Hog({hij}) pi%fT£T>((m —1)7) eimHegr({his})
Since the matrix norm in the residual is the Frobenius norm, this is essentially a nonlinear
least squares fit of complex parameters. Note that the precise order of rows in X and
Y does not matter as long as every row in Y represents the time evolution of the cor-
responding row in X. The integer m denotes the number of intermediate time steps for
which data is generated. The additional subscript k£ € {1,...,r} for |i;) on the reduced
density matrices denotes the corresponding initial state of pi5(0) in Eq. , selected
from a set of r different initial states. In practice, we usually set 7 = 12 and choose |¢)
from the eigenbasis |ij) of o} and ¢}, the eigenbasis |+4) of o7 and ¢, and the four
maximally entangled states |®*) = (]00) & [11))/v/2 and [¥*) = (|01) + [10))/v/2. We
can of course include the evolution of other initial states as well; we only need to make
sure that the supplied data in X and Y yields enough information about the effective
evolution to reconstruct H.g.

Note that 7 in Eq. is not necessarily equal to the time step that is chosen to solve
the TDSE. It can be made arbitrarily large to allow intermediate interactions through
higher non-computational levels or entanglement between the systems, or even a time-
dependence of the effective Hamiltonian. But in the end, if we study a proposed scheme
that can in theory generate a specific gate, we should be able to see the corresponding
effect in the resultant h;;.

4.4.2. Evaluation

The fitting procedure given by Eq. is, of course, a complicated nonlinear min-
imization problem. Hence the results will depend highly on the initial values for the
algorithm. Furthermore, there is no theoretical guarantee that it really converges to a
global minimum, and if it does not, we have no definite way of knowing whether no
effective Hamiltonian exists or the fit just did not find one.

To overcome these issues, we always start the fit from an effective Hamiltonian that has
been analytically obtained using one of the theoretical methods described above. That
is to say, we take the initial values for the fitting algorithm directly from the form of the
effective Hamiltonian predicted by the theory.

If the fit has been successful, we use the found effective Hamiltonian to recompute the
time evolution in Eq. for all t and take the norm of the difference from the original
plo T(t + 7). This is mathematically equivalent to taking the norm of the residuals from
the nonlinear fit in Eq. . As a reference norm, we use the bare residuals for the case
H.s = 0 when no evolution takes place. This allows us to find the degree of how much
better the Hamiltonian evolution can describe the data. So we define the failure rate ~
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as

Y —F({hy} X2

(4.48)
Y — X%

A failure rate 7 < 1 then tells us that the evolution can be well described in terms of
the effective Hamiltonian in the two-qubit space, whereas v ~ 1 implies the opposite.

As a proof of concept, we used the spin model from Eq. (3.7)) to solve the TDSE and

comp

generate data sets {pj5 " (t)} for 20 to 80 different times ¢. The parameters were cho-
sen to generate single-qubit X and Z rotations (meaning only hf/ “ £ 0), and two-qubit

couplings of the type XX, YY, and ZZ (meaning only sz/y/z # 0). The initial states
were set to either |ij) for all i,7 € {0,1}, or |ab) for all a,b € {+,—}. Then we used
the procedure described in the previous section to reconstruct the Hamiltonian from the
density matrices. In each experiment, the procedure was able to reconstruct H exactly
(up to numerical precision), achieving failure rates v between 1072 and 107!2. Seeing
this as a demonstration of principle, we now proceed to apply the simulation software
including this method to study some proposed gate realizations in superconducting qubit
networks in the following chapter.
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5. Quantum computing systems

In the previous chapters, we have given an overview of the theory regarding Cooper pair
box qubits (CPB qubits) and introduced the computational tools we have developed to
study them. Thus we are now ready to investigate a few selected systems that have been
proposed for quantum computer hardware and have already partly been implemented.

The regimes which CPBs are operated in can be divided into the charge and the
transmon regime (see section. Both can be classified by their ratios of charging energy
E¢ to Josephson energy E; and the preferred basis used for computational operations.
Since the charge regime is the traditional regime, we first examine two representatives with
different couplings, as proposed in the literature. Then we turn our focus on transmon
qubits and, in particular, look at recent developments in the refinement of single-qubit
and two-qubit gates.

5.1. Charge quantum computer

In the charge regime E- > E;, the computational states are usually chosen to be the
charge states or their symmetric and antisymmetric superpositions. To operate a quantum
computer with more than one qubit, however, we have to additionally define the way of
coupling the qubits. Two proposals, namely a capacitive coupling through the charges on
each CPB and an inductive coupling via an additional Josephson junction, are studied
in this section.

5.1.1. Charge qubits with capacitive coupling

Typical gate proposals for multi-qubit systems traditionally require either tuning the in-
dividual qubits (by e.g. some external flux) or tuning the intermediate circuitry to achieve
coupling. In 2005, a novel scheme has been presented based on setups that have both
fixed-frequency qubits and fixed coupling elements [RBDO05|, using only microwave signals
to control and couple the qubits. A significant experimental representative of this class
is the so-called cross-resonance gate [RD10; |(CCG-+11| that is now one of the popular
schemes for transmon qubits [SMC-+16|. Its underlying two-qubit interaction controlled
by microwave signals has initially been proposed for capacitively coupled charge qubits
[Par06; LCPO8|. Hence, before coming to the cross-resonance gate in the next section,
we use this scheme as a first application of the simulation software.

The system is characterized by a Hamiltonian describing two CPBs and a capacitive
coupling between them [Par06], i.e.

2
H = Z(ECz(ﬁz — ngi)2 - EJZ' COS @z) + Em<TAl1 - ngl)(ﬁg — ngg) . (51)

=1
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By comparing this Hamiltonian with the capacitive coupling Hamiltonian of the CPB
model in Eq. , we can identify the only nonzero parameters Eci co = Epy, ”51,02 =
Ngi, ngLCQ = nge. Since we need two qubits in the charge basis, we set the parameters
of the Hilbert space in Eq. tom =2,Ny=0,N; = Ny =2, and N, = 0, such that
each CPB is described in a space spanned by the five charge states |n = —2),...,|n = 2).
By monitoring the populations during the time evolutions, we verified that this Hilbert
space is large enough to describe all relevant dynamics of the system.

For the device parameters, we take the energies suggested in [LCPO§|. They are ex-
pressed in terms of an effective coupling strength w,, = 27 x 0.02GHz. With h = 1,
we thus set E;; = 201w, Fjo = 199w,,, and E,, = 4w,,. Additionally, we set
Eci = Ecs = 2w x 100GHz, so E;/Ec =~ 0.04, which should make the CPBs oper-
ate in the charge regime. As motivated in section [4.2] we set the time step to solve the
TDSE to 0.1 ps.

The charge qubits are each operated at their sweet spots (a.k.a. codegeneracy point),
so we set ng = ng = 1/2. Each qubit’s dynamics should then be contained within the
two-dimensional subspace spanned by the charge states |0) and |1). Thus, w.r.t. the basis
|4+) = (]0) £ [1))/V/2, the system is said to be well described by the effective Hamiltonian
|Par06]

E E
—%Jf - %05 + Wy0y05 . (5.2)

Heff —

The first thing to check is whether this effective spin Hamiltonian can reproduce the free
evolution of the system over a time span of 30 ns, which is the gate duration of the two-
qubit gate examined shortly. We do this by applying the procedure outlined in section
to assess effective Hamiltonians. The parameters for Eq. are set to 7 = 0.001,
m = 30000, and » = 12. For the expansion coefficients h;; of the resultant effective
Hamiltonian in the Pauli basis (see Eq. (4.46)), the procedure yields

hso/2m = —2.0098 GHz (5.3a)
hos/2m = —1.9898 GHz (5.3D)
hi1/27 = 0.0200GHz | (5.3¢)

together with a failure rate of v = 1.56632 x 107® (see Eq. ) Since these numbers
match the coefficients in Eq. up to two decimal digits, we find that the system is
indeed well described by this effective Hamiltonian.

It is worth listing the approximations we have validated for this case at the co-
degeneracy point: First, the superposition of charge states |+) is a valid approximation
to the eigenstates of the uncoupled Hamiltonian; and second, the qubits do not leak out
of the two computational subspaces.

Next, we consider a scheme for the realization of the CNOT gate given by Eq. (3.9)
between both qubits. Since the computational basis for the Hamiltonian in Eq. is
given by |4), but we are usually familiar with the action of CNOT on basis states labeled
|0) and |1), we now relabel |[+) — |0) and |—) — |1).

The proposed scheme for the CNOT operation relies on using only microwave driving
of the individual qubits through the capacitively coupled voltage sources Vg;. As they
enter the Hamiltonian via the offset charges ny;, we model their explicit time-dependence
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as suggested in |[Par06], i.e.

ng(t) = % + w1 (t) cos(wt + ¢1) (5.4a)
nga(t) = % + wo(t) cos(wt + ¢2) (5.4b)

where ¢ and ¢, are arbitrary phases and the microwave frequency w = 200w, lies exactly
between the two Josephson energies of the qubits. The effective Hamiltonian given by
Eq. (5.2)) then needs to be updated to include the new sinusoidal drivings according to

H s HT 4+ Ecyw, (t) cos(wt + ¢1) 0f + Ecgwy(t) cos(wt + ¢o) a5 . (5.5)

For an efficient realization of the CNOT gate, proper pulse shapes wi(t) and ws(t) are
given in |[LCPO§|, resulting from simulated annealing. They are defined as 30ns-long
continuous piecewise linear functions satisfying 0 < w;(t) < 10w,./Ec; as well as the
boundary conditions w;(0) = w;(30ns) = 0, and the phases are set to ¢; = —0.27 and
¢o = 0.077 (see Fig. for plots of the pulses).

A time evolution of the system for the initial state |10) and the spin singlet |¥~) =
(]01) —[10))/+/2 is shown in Fig.|5.1/and Fig. , respectively. In both cases, the CNOT
gate is properly carried out. This is also confirmed by the corresponding animations on
the Bloch sphere (see appendix [F)): For the initial state |10), both spins start and end
parallel to the z-axis, with the second spin flipped after the evolution. For the state |¥~),
the evolution starts with both spin vectors having magnitude zero, and it ends with the
first spin pointing along the negative x-axis (state |—)) and the second spin pointing
along the negative z-axis (state |1)).

To evaluate the operation a bit more quantitatively, we compute the gate fidelity for
the same twelve initial states that we also selected for the optimization problem (cf.
Eq. (4.47)). For the gate fidelity, we use the common definition from |[Nie02]

I = dTr(ppideal) +1

where d = 22 = 4 is the dimension of the computational Hilbert space, p is the density ma-
trix obtained after the quantum operation, and pjqea is the ideal density matrix computed
from the unitary gate U, = CNOT applied to the initial state [}, i.e. pigeas = Uy [ )¥] UgT.

We consider a sequence of nine successive CNOT gates. Since in theory CNOT" =
CNOT for n odd, we evaluate Eq. after every second gate starting from n = 1 to see
how the gate fidelity behaves in successive operations. The results are shown in Fig. [5.3]
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Figure 5.1.: Time evolution of the operation CNOT |10) = |11). The upper two plots show
the Voltage pulses applied to both qubits, defined by the envelopes wy /5(t) in Eq. -
and Eq. . The lower two plots show the time evolution of the probablhty to measure
the qubit in the state |1). As expected, the first qubit starts and ends in |1), while the
second qubit undergoes a bit flip from |0) to |1).
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Figure 5.2.: Time evolution of the CNOT gate applied to the singlet |¥~) (labeling as in
Fig. [5.1)). Since CNOT |¥~) = |—1), the first qubit starts and ends in a superposition of
|0) and |1) while the second qubit evolves into |1).
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Figure 5.3.: Gate fidelity of CNOT according to Eq. during nine successive opera-
tions, starting from various initial states corresponding to different colors in the plot. For
one application, all evolutions have a fidelity above 99.7%. After nine applications, all
fidelities are still above 92%. Observe also that even if successive gate applications on the
basis states are fine, this does not necessarily hold for superposition states. Interestingly,
the best state |00) and the worst state |—+) are actually both eigenstates of CNOT.

The gate fidelities for one application are above 99.7% for all initial states under con-
sideration. This agrees with the results stated in [LCPO§|, where the RWA has already
been made before evaluating the gate fidelities. Thus the RWA does not seem to influence
the success of the gate much in this case. Even after nine successive applications, the
fidelities are still above 92%, with the best performance achieved for the initial state |00).

We have to keep in mind, though, that the gate fidelity defined by Eq. is actually
a rather kind measure. Observing the states of the spin vectors on the Bloch sphere, we
find that for F, ~ 92%, a single spin can point away from the z-axis by an angle of more
than 35° (see also the example in Fig. in appendix . Furthermore in experiments, it
has proven difficult to keep charge qubits coherent over a longer time span due to charge
noise [KYG+07]. Nevertheless, we observe that the scheme under investigation, which
forms the basis of the cross-resonance gate, performs reasonably well w.r.t. Hamiltonian
dynamics.

5.1.2. Charge qubits with Josephson-inductive coupling

Having studied a scheme of static coupling without external flux-tuning in the previous
subsection, we now also briefly investigate a scheme for tunable coupling proposed in 2003
[YTNO3| and experimentally studied in 2008 [YWY+08|. The idea is to use an additional
Josephson junction closing the branches between split Cooper pair boxes such that the
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coupling can be tuned by an external flux. The corresponding circuit has already been
introduced as an application of the circuit quantization rules in sectionm (see Fig.[2.6)).

In [YTNO3], the authors start from a circuit equivalent to the one in Fig. [2.6/for m = 2 and
Ejo; = Ey;. After making a few approximations, they arrive at the circuit Hamiltonian

2
H = Z(ECz(ﬁz — ngi)Q — EJZ‘ COS (,51 — EJZ‘ COS(@Q — @z + gbex)) — EJ[) COS (,50 s (57)
=1

where the notation has been adjusted to the CPB model given by Eq. . This Hamil-
tonian differs from the one obtained in the full circuit analysis (see Eq. ) in that the
cross-capacitive terms are missing, but both Hamiltonians coincide if E¢q is negligible to
all other energy scales. Therefore, we study two Hamiltonians in this section:

® Higear given by Eq. (2.48]) without capacitive coupling (i.e., without the second line)
b real giVen by Eq' "

For Higeal, we take the parameters estimated in [YTNO3| since they are what their deriva-
tion is based on. For H,.., we consider the slightly different energies measured in the
actual experiment [YWY-+08|. In both cases, the charge qubits are operated at the
codegeneracy point ng, = ng = 1/2. A summary of the device parameters is given in

Tab. (.11

Table 5.1.: Device parameters for the two Hamiltonians Higea) and H,ea. The energies of
the first setting are chosen according to the theoretical estimation given in [YTNO3|. In
particular, we set Fco/2m = 0.01 GHz to make Higea coincide with the Hamiltonian in
Eq. . The second setting is taken directly from the measurement of sample A in the
corresponding experiment in [YWY+08|.

Eci/2m (GHz) E;i/2m (GHz)

1=0 1=1 1=2 1=0 1=1 =2

ideal 0.01 100 100 13.13 2.63 2.63
real 8.8 114 108 23 5.7 5.7

The simulation is carried out with the same time step and the same Hilbert space as
before, the only difference being the new subspace for the coupling junction that we define
by Ny = 20. The reason to include 2Ny + 1 = 41 different charge states for this Josephson
junction lies in the fact that Fj;g > F¢o, so we need to make sure that all dynamics
is contained within this space and boundary effects do not play a role. Essentially, this
implies that p(ng) given by Eq. must go to zero for |ng| < Ny. Furthermore, p(¢p)
given by Eq. should remain a smooth function throughout the time evolution. The
coupling junction is always initialized in its respective ground state. Mathematically, this
state corresponds to the transmon ground state |m = 0), (see section [2.3.1]) and is thus
completely characterized by the energies Fro and Ej. For the qubits, we prepare various
initial states from the two-qubit subspace @>_, span{|n; = 0), |n; = 1)}.
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The result of the derivation in [YTNO3| is that for Higea, a coupling between both
qubits can be tuned by the external flux ¢,. To obtain this result, the authors first
apply a variable transformation to Eq. inspired by flux quantization. Then by using
current conservation and a series expansion in ¢ and the parameters n;, = F;;/2E ;0 < 1,
the authors eliminate the coupling system to obtain an effective spin Hamiltonian in the
charge basis {|0), |1)}*?, consisting only of terms of the form o7, 6%, and ¢%c%, controlled
by the external flux ¢ox. By tuning ¢ex = 0, the two-qubit terms can be turned off to
generate single-qubit operations, whereas for ¢.x = 7, we have only the coupling. The
steps of the derivation have been put into a Mathematica notebook [Woll5| that can be
found in appendix [E] Since the transformation of variables contains some mathematical
subtleties w.r.t. the domains of the operators (see also the discussion in appendix ,
we have chosen not to make it. Instead we keep the Hamiltonian in the fundamental
form that directly results from the circuit quantization rules in section [2.2.3] The same
derivation applied to the original Hamiltonian then leads to the same single-qubit terms
for ¢ox = 0 and a two-qubit coupling of the same coupling strength for ¢., = m, but of

the form oYy (see appendix [E]). Thus we consider the effective Hamiltonian

2
1 qbex J144J2 . qbex
HQHZE:(Ei<ni——>af—Eicos af)——EEsuP olod . (5.8
B R N ! 2 AE 5 g 172 (5:8)

At the sweet spots, the terms along o7 vanish such that H°T generates only single-qubit
rotations along the z-axis and two-qubit couplings of the type ofoy. The resultant
leading-order terms can also be understood by an intuitive argument: First, the o7 terms
are the same as in Eq. , so there is no surprise. Similarly, Eq. yields al-
ready half of the o7 terms for ¢ox = 0. The other half comes from the coupling term
cos(po — ¢;) & cos ¢; since with the coupling system prepared in the transmon ground
state, we have cos ¢y ~ 1 (recall that Ejo > FE¢o). This also explains why the oF terms
cancel for ¢, = 7, as cos(pg — @; +m) = — cos(pg — ;). To understand the emergence of
the exchange coupling oyo} at next-to-leading order, it helps to recall the explicit form
of the Josephson-coupling in the charge states (see Eq. from the derivation of the
product-formula algorithm). There we see that it generates single Cooper-pair transitions
between the coupling junction and either qubit with phases determined by ¢e.. Elimi-
nating these transitions then results in a virtual exchange coupling between both qubits.

Obviously, the next step is to see how well H can describe the effective time evolu-
tion in the two-qubit subspace. For this purpose, we continuously evaluate the fidelity

_ dTe(p(t)p™"(t)) + 1

F() d+1 ’

(5.9)
where d = 4 as before, and

() = e )] (5.10)

represents the predicted effective time evolution, and p(t) is the actual reduced density
matrix obtained from the simulation. The results for various initial states |¢) are shown
in Fig. . We find that the ideal case for ¢., = 0 is accurately reproduced by H°%. The
case ¢ox = T can obviously only be well described at certain time intervals, suggesting that
higher orders in 7; and 7, play a non-negligible role. For the real system, the additional
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capacitive coupling terms seem to thwart the success of the effective Hamiltonian. This is
reasonable since their energy scales are on the same order of magnitude as the Josephson
energies of both qubits (see Tab. and Eq. (2.48)). The reason that the singlet |¥~)
performs so well is that, as an eigenstate of 0§03, 030y, and o503, its evolution is trivial
in each case.

= ™ - ‘*‘ —T —r —r T
\ ", v
08 - \_ | - \_/ / | 08
= 06t L~ 1t 0.6
=
=
~ 04 00) E H = 404
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Pex = 0 (real) dex = 0 (real)
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0 T T 1 T T 1
0.8 e = 40.8
2 06 - - 40.6
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& 04 | o 1t = {04
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Figure 5.4.: Time evolution of the fidelity in Eq. (5.9) to compare the actual evolution
given by Higeal and Hieq (see Eq. (2.48)) to the effective evolution generated by HeT in
Eq. (5.8). Both the ideal and the real case are shown for ¢., € {0,7}. The four plots

correspond to different initial states in the two-qubit subspace.

Since the success of the leading-order approximation H*f in Eq. especially for Hyea
seems to be rather limited, we use the procedure from section [4.4] to see which additional
contributions need to be considered in an effective spin Hamiltonian. Furthermore, this
also tells us whether there actually exists an effective unitary evolution in the two-qubit
subspace such that eliminating the coupling system makes sense in the first place. For
the optimization procedure given by Eq. , we set the parameters to 7 = 0.001,
m = 2000, and r = 12. The results are shown in Tab. .2
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Table 5.2.: Effective Hamiltonians obtained from the generated data of the time evolu-
tion of 12 different initial states. The numbers in each 4 X 4 matrix are the expansion
coeflicients h;; /27 in GHz defined by Eq. . Beneath each matrix, the failure rate
given by Eq. is shown. The terms already contained in H°% in Eq. are shown
in green if their magnitude is correct and in blue if not, while additional significant con-
tributions are printed red. In all cases, the fits converged to the same Hamiltonians when
no initial values were given, so the procedure is stable for this setup.

¢ex:O gbexzﬂ’
1y s oy o 1y o3 ay o3
1, -0.000 -2.619 -0.000 0.000 1, 0.000 -0.010 0.000 -0.000
e o -2.619 -0.000 -0.000 -0.000 o? -0.010 -0.001 -0.000 -0.000
el GY 0,000 -0.000  0.001  0.000 oV 0.000 -0.000 -0.074 0.001
o7 0.000 -0.000 0.000 -0.000 o -0.000 -0.000 0.001 0.007

v = 0.000 vy =0.823
1y oy oy o5 1y o oy o5
1, 0.001 -5.113 0.014 0.000 1, -0.000 -0.256 -0.011 -0.001
e o -5.114 -0.031 0.002 -0.001 o -0.256 -0.037 -0.002 -0.004
real o/ 0.014 0.002 0.019 -0.031 oy -0.012 -0.002 -0.351 0.005
o7 0.000 -0.001 -0.030 0.001 o -0.001 -0.004 0.005 0.117

v =0.158 v =0.972

As expected from the plot in Fig. [5.4] the ideal case Higeas for ¢ox = 0 is well described by
Eq. , and the corresponding failure rate v = 0.000 shows that the effective evolution
on the subspace is unitary. The dominating terms in HS | are single-qubit rotations
about the x-axis, with the coefficients given by a value slightly smaller than the Josephson
energy in Tab. So in this case, the description in terms of H° is accurate. However,
for ¢ox = m we find that the evolution of the system is too complex to be well described
by an effective Hamiltonian in the two-qubit subspace. Even though the coefficient of
oioy gives the largest contribution, it is smaller than the supposed coupling strength in
Eq. by a factor of 2, and the failure rate v = 0.823 is close to one. Mathematically,
this expresses the fact that the Kraus operators M7y in Eq. cannot be approximated
by a unitary transformation.

In the real case Hiea for ¢ex = 0, the resulting coefficients of of and 0§ of approx.
—5.1 GHz are also slightly smaller than the Josephson energies given by Tab. In-
terestingly, this explains the large sinusoidal oscillations of the blue curves in Fig. [5.4}
Since the rotations about the x-axis are slightly slower than Eq. predicts, the fidelity
represented by the blue curve for |1)) = |00) returns to 1 only every 1.5ns. A similar be-
havior is observed for [¢)) = |®T), where the operation creates an entangled state. Apart
from that, the red numbers in Tab. for HeI indicate the effects of the additional
capacitive coupling terms. Also in this case, higher failure rates reflect the fact that not
all dynamics of the system can be sufficiently covered by an effective Hamiltionian.
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5.2. Transmon quantum computer

In this section, we consider transmon qubits classified by a larger ratio of E;/E¢ (see sec-
tion. Due to the decrease in charging energy, the bare charge states are not suitable
for quantum computing anymore; instead, the new transmon eigenstates characterized
by E; and E¢ constitute the computational basis.

The type of transmons we study are those with fixed energies coupled by fixed mi-
crowave resonators, where quantum gates are realized by capacitively coupled voltage
sources using all-microwave controls. The design principle is sometimes called FLIC-
FORQ and the idea is to take advantage of the natural spread in the parameters of the
fabricated devices instead of suffering from it [RBDO05|. The specific system we study is
inspired by a recent setup from IBM that can be accessed on the Internet [IBM16]. A
similar architecture was also recently employed to implement parity checks in a quantum
error correction protocol [TCM+16].

The Hamiltonian of the system under consideration comprises two CPBs in the transmon
regime coupled by a transmission line resonator (cf. Eq. (3.1)), i.e.

H = Hcp + HRres (5.11)
where
2
Hcpp = Z (Eci(fy — ngi)? — Ejicos ¢;) (5.12a)
i=1
2
HRes = Wrde + Z gzﬁz(d + &T) . (512b)
i=1

Since we consider microwave driving through the capacitively coupled voltage sources,
and the external voltage is proportional to n,, we put an explicit time dependence on
this control parameter from now on. Furthermore, it makes sense to separate Hcpg into
the bare transmon systems Hr.; and Hryo, and the external drivings Hp,; and Hp,s, such
that (up to a constant) Hcpp = Z?;l(HTm’ + Hpyi) where

Hry = Ecin? — Ej; cos (5.13a)

It is common to write the microwave driving at frequency wy; as
Ngi(t) = Ngai(t) cos(wait) + ngyi(t) sin(wgt) (5.14)

since in a rotating frame, the quadratures ng,;(t) and ng,;(t) induce single-qubit rotations
about the x-axis and the y-axis, respectively [Gam13)|.

For the simulation, we define the Hilbert space given in Eq. by No = 0, Ny, =
3, and N; = Ny = 8 such that each qubit is described by 17 charge states. Since
the transmon states |m), are superpositions of charge states distributed around |n = 0),
IKYG-+07], this number has proven sufficient to cover all dynamics without introducing
boundary effects due to missing states in the representation of |m),. In the simulation
program, these states are actually obtained by diagonalizing the tridiagonal matrices
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Table 5.3.: Device parameters defining the system Hamiltonian in Eq. (5.11]). All energies
are expressed in GHz with o = 1. The CPBs are operated in the transmon regime
with Fj;/Ec; ~ 11 (cf. Fig. and their coupling to the detuned cavity is weak as
|lw; — wy[> |gi| for i =1,2.

Eci/2mr Ej/2n w;/2r  6;/21 w./21m ¢;/27

Transmon 1 1.204 13.349 5.350 -0.350 7 0.07
Transmon 2 1.204 12.292 5.120 -0.353 7 0.07

corresponding to Hry; given by Eq. in the charge basis. As the computational
basis consists of the lowest transmon eigenstates |m = 0), and |m = 1),, we prepare the
qubits in various superpositions of these. The resonator is always initialized in its ground
state of zero photons |k = 0)g... As before, the time step to solve the TDSE is set to
0.1 ps.

The device parameters for our two-qubit system are shown in Tab. [5.3] It contains
the mandatory energies defining the Hamiltonian in Eq. (5.11). For reference, we also
show the transition frequencies w; = %(0%1) between |m =0), and |m = 1), and the
anharmonicities §; = wflﬁm - %(0%1) obtained from diagonalizing Hty;. These quantities
are frequently used to characterize transmons in the literature (cf. [CGC+12; (CGM+14;
CMS-+15|).

In the following sections, we first study the influence of different pulses for ny(t) given
by Eq. on the accuracy of single-qubit gates, and then proceed to analyze the
resonator-mediated two-qubit interaction between qubits of this type.

5.2.1. Single-qubit gates with various pulse shaping techniques

To realize single-qubit rotations, we need to specify a certain pulse shape for the external
driving n,;(t) (see Eq. (5.14)). In particular, we need to choose the envelopes ng,;(t)
and ng,;(t). As it turns out, the areas under these functions directly determine the angle
of rotation |Gaml3|, and it is common to use Gaussian or tangential envelopes having
simple pulse-shaping hardware requirements [MGR+09|. Unfortunately, due to the weak
anharmonicity in the eigenspectrum of transmon systems, leakage into higher levels can
be a limiting factor for the fidelity of single-qubit gates. Therefore, specific pulses have
been devised to correct for this leakage. The essential idea is to keep the envelope
on the first quadrature (say n,.;(t)) and set the second quadrature proportional to its
derivative (i.e., ngyi(t) o ng.i(t)), going under the name derivative removal by adiabatic
gate (DRAG) [MGR+09|. The technique has been tested in experiments [CDG-+10;
SBM+16; [CKQ+16|, and a comprehensive survey of the theory based on anharmonic
oscillators is given in [GMM-+11].

In the following, we first give a brief outline of the theory of optimized single-qubit
rotations, and then present the results of our simulation based on the system defined by

Eq. and Tab.
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Theory of single-qubit pulses

The first step is to see how a transmon given by Hry; (see Eq. (5.13a])) can actually
be approximated by an anharmonic oscillator. For that purpose, we introduce ladder
operators b; and bT such that

fp=—4 8E{’]CA (bi + bj) (5.15a)
B = —if 8701 (bi _ b}) . (5.15h)

After substituting these expressions into Hry; given by Eq. (5.13a)), expanding the cosine
in E¢;/8E;, and making the RWA, one obtains [Gam13]

Hyi 2 @ibJb; + blbi(blb: 1) (5.16)

where @; = \2FEc;Ej; — Eci/4 ~ w; and 6 = —Fc; /4 ~ §; are good approximations to
the qubit transition frequency and the anharmonicity, respectively. Since |(§Z| < |@;, this
Hamiltonian describes an oscillator of frequency @;, where the transition frequency be-
tween successive levels m and m+1 is displaced by md;, and the corresponding eigenstates
are generated by the ladder operator I;j The driving Hamiltonian given by Eq.
expressed in this basis reads

HDm-:2Ecm/8EClngz()(bi+bj) . (5.17)

In this frame, Hp,; only generates single-qubit rotations about the x-axis since in the
TLA, we have b + b — of. However, if the qubits are consistently defined in a frame
rotating around the respectlve local z-axes at frequency @; (i.e. the change of basis is given
by R; := exp(—i@itl;ﬁ)i)), we can generate a complete set of single-qubit rotations: Using
the notation H? := RTHR —iR'R and making the RWA, we obtain in the computational
subspace [Gam13|

Bingsi(t) ,  Ping(t)

y
: : d
5 i + 5 0 (5.18)

ngii =
where 3; = 2E¢;v/ E;/8E¢;. Note that we have set the detuning between the microwave
field and the qubit frequency to zero, i.e., wy = @;. So we can generate rotations on two
independent quadratures and thus cover the entire Bloch sphere. From the expression of
the unitary time evolution operator exp(—i fot ng"i dr) in conjunction with appendix
we find that the total angle of rotation is given by the area under the envelopes ng,;(t)
and ng,,;(t). For instance, rotations of angle o, about the z-axis must satisfy

ap = [ Bingsi(r)dr . (5.19)
/

We use this normalization condition on the pulses to engineer single-qubit rotations of
various angles. For the particular shape of the pulse, we consider a set of four different

68



5.2. Transmon quantum computer

functions for f;ng.;(t) or Bing,(t), respectively:

QY (t) = Ac (Constant) (5.20a)
QL() = Ay, (%g - ‘t - %" ) (Linear) (5.20b)
QF(t) = Ag [ e (t—1y)" e ty (Gaussian) (5.20c)
= X _— — ex _— .
“ P 202, P 802,
. t t,—t t, ,
02" (t) = Ar | tanh — + tanh — tanh —+ (Tangential) (5.20d)
or or or

In these expressions, all functions are defined for 0 < t < t,, where ¢, is the gate time.
The normalization factors A¢)r/q/r are determined by Eq. , and the standard de-
viation o for the Gaussian pulse and the rise-time parameter o for the tangential pulse
are both set to t,/4.

As mentioned above, the pulses given by Egs. (5.20a)—(5.20d) can result in unwanted
leakage into the third level |m = 2), [MGR-+09]. Based on an anharmonic oscillator de-

fined by Eq. , the theory of DRAG proposes a driving of the other quadrature
proportional to the derivative of the pulse. As the pulses are all symmetric w.r.t. ¢,/2,
their derivatives are antisymmetric such that their integral over the gate duration van-
ishes. Thus the net angle of rotation on this quadrature is not changed (see Eq. )
However, the leakage into the third level is expected to reduce such that the gate’s accu-
racy can improve [GMM+11].

In particular, we consider three kinds of DRAG corrections for a given shape €2(¢) chosen
from Egs. f. They are called the Y-only first-order correction, the optimal
first-order correction, and the Y-only second-order correction, respectively |[GMM-+11].
All of them are characterized by a pulse Q4 (¢) on one quadrature, a derivative pulse Q(t)
on the other quadrature, and a phase §(t):

(DRAGLY) Q(t) = Q(t), Qu(t) = —%E;), i(t) =0, (5.21a)
(DRAGLO) Q4(t) = Q(t), Du(t) = —%, it) = 92(22(1 —/2), (5.21b)
(brRAG2Y) Qu(t) = Q1) + 98(33, (1) = —%(;), 5(t) = 0. (5.21¢)

The phase §(t) originally represents the detuning between the driving and the qubit
frequency. However, since we have fixed-frequency qubits with wy = @;, we need to
apply phase ramping to achieve the same effect |[GMM+11]. Thus the mapping between
these pulses and the envelopes ng,;(t) and n,;(t) for rotations about the z-axis is

nyei(t) = % (Ql(t) cos( /0 5(s) ds) + Ou(t) sin ( /0 "5(s) ds)) (5.22a)
ngyi(t) = % (Qg(t) Cos( /0 5(s) ds) O, (t)sin ( /0 "5(s) ds)) | (5.22D)

If §(¢) = 0, phase ramping simply falls back to identifying ny.;(t) = Q4(¢)/5; and ng,,(t) =
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Q(t)/B;. To realize rotations about the y-axis, we just need to replace (ngui,Ngyi) —
(Ngyis —Mgai); Otherwise, the relations stay the same.

Simulation

We study the universal set of single-qubit rotations | J7_,{X?, X;/Q, Xjr/4, Xjr/s’ Y, YTf/Q}

[CGC+12| using the notation from appendix @ The various pulse shapes are defined in
Eqgs. f and the DRAG corrections are given by Egs. f. We
consider three different gate times ¢, € {4 ns, 8 ns, 40 ns} representing short, intermediate,
and long single-qubit gates [SBM-+16|. For each gate, we compute the gate fidelity given
by Eq. with d = 22 = 4 and monitor the leakage. This leakage is defined as the
probability to find the qubit in the primary non-computational state |m = 2) since the
corresponding transition is expected to be suppressed by the design of the DRAG pulses
[GMM+11]|. To study the influence of the experimentally always-on coupling between
both qubits, we first run every setup with the resonator Hamiltonian (see Eq. )
switched off, and then repeat the experiment with the coupling switched on. The results
are presented in Figs. [5.5H5.5] We only show the results of the various single-qubit gates
on the first qubit, since the difference to applying the same gates to the second qubit is
insignificant.

We find that for short pulses of ¢, = 4ns (see Figs. and , simple Gaussian
pulses produce the worst results. Correcting them with DRAG substantially improves
the fidelities and reduces the leakage, suggesting that leakage to higher levels is indeed an
essential source of errors. The second-order Y-only correction produces the best results
in terms of fidelity (recall, though, that a fidelity of almost 95% can still mean that
the spin does not point in the right direction as shown in Fig. |[F.2)). The best result
in terms of leakage, however, is achieved by the optimal first-order correction. This
agrees with the recent experimental finding that these DRAG pulses always have a trade-
off between total fidelity and leakage errors |[CKQ+16|. In general, tangential pulse
shapes tend to perform slightly better than Gaussians. Interestingly, reducing the angle
of rotation always increases the gate fidelity and reduces leakage. Since smaller angles
directly correspond to smaller amplitudes of the voltages (see Eq. ), this indicates
that a Bloch-Siegert shift [BS40| resulting from the counter-rotating terms of the RWA
may play a role. We also observe a related behavior in the spins’ motion on the Bloch
sphere (see section . The presence of the always-on coupling through the resonator is
not evident for short gates.

The results for intermediate gate durations of ¢, = 8ns are shown in Fig. 5.7 The
leakage into the third level has been reduced by a factor of 10 w.r.t. Fig. [5.5, which is
in agreement with the populations predicted by the theory |[GMM-+11|. Consequently,
the single-qubit fidelities have improved significantly. Furthermore, as a consequence of
the reduced amplitudes of the control pulses, we find that the spin’s path on the Bloch
sphere has become smoother. The second-order DRAG correction still produces the best
fidelities above 99% in all cases, with the winner again being the tangential pulse shape.
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Figure 5.5.: Gate fidelity and leakage for short gates (t, = 4ns) dependent pulse shape
and the presence of the resonator. Different colors correspond to different gates. For each
gate and pulse shape, the markers “0”, “+”, and “x” correspond to the initial states |00),
|[++), and |¥™), respectively. The averages are represented by solid lines.
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Figure 5.6.: Pulse shapes and time evolution of the leakage for the operation X! [¥~) and
a gate duration of £, = 4ns. The first control (blue) resembles the pulse shape chosen from
Eqgs. (5.20a)—(5.20d), and for the DRAG corrections, the second control (red) resembles
its derivative. The intermediate population of the level |m = 2), is shown in black. For
each pulse, it is on the order of 10%. The corresponding results for the other gates (not
shown) are the same with and without resonator; however, the scale of the leakage for
smaller angles goes down to 0.1% for X! /s
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Figure 5.7.: The same as Fig. for intermediate gate times ¢, = 8ns. For all pulses, the
gate fidelities and the leakage have improved substantially. The effect of the resonator
on the single-qubit gates is still not directly visible.
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Figure 5.8.: The same as Fig. for long gate times t, = 40ns. Without the resonator,
all single-qubit gates are nearly perfect. With the coupling between both qubits switched
on, a strong dependence of the fidelity on the prepared initial state can be observed.
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For long gate times with the resonator switched off, the single-qubit gates are nearly
perfect (see Fig. , all reaching fidelities above 99.7%. The specific shapes of the
pulses and the usage of DRAG make no difference since the spectral weight of the pulses
at the transmon anharmonicity is negligible [Gam13|. This has also been experimentally
confirmed [CDG+10|. Interestingly, with the resonator switched on, simple Gaussian
pulses perform best on average. However, this slightly better performance is not very
significant due to the large spread in the fidelity for different initial states (for X! /s We
have F, ~ 75% for |[++), while F, ~ 100% for |00)). The reason for the almost constant
displacement in fidelity lies in the cavity-induced Lamb shift of the qubit’s frequency:
On the Bloch sphere, we observe an additional rotation of the spins about the z-axis
of approx. ¢?/(w; — w,) X t, &~ —7/4. A solution would be to adjust the pulses to the
Lamb-shifted energy levels or to use control calibration techniques to optimize for the
systematic over- and underrotations [SBM+16|. Errors due to the always-on interaction
can also be tackled using dynamical decoupling with refocusing pulses known from NMR
[DP14].

The long gate durations have also been used in current experiments on quantum error
correction |[CGM-+14; CMS+15; [ TCM+16| due to the long coherence times of transmons
and the high fidelity of the operations. However, eventually the speed of single-qubit
gates should not be restricted to these time scales. To make the single-qubit gates faster,
additional techniques refining the simple DRAG pulses should be taken into account
[SDE-+13; [CKQ+16]. It would be an interesting project to further analyze these ideas.

5.2.2. Two-qubit interaction and the cross-resonance gate

For a high-fidelity two-qubit gate, one needs to have a good understanding of the effective
interaction between the single transmon qubits. In the circuit QED architecture that we
consider (see section and Eq. (5.11)), this interaction is mediated by the resonator
that both transmons are weakly coupled to. Since the resonator is described by a sepa-
rate subspace of the Hilbert space, this setup represents an ideal candidate to apply the
effective Hamiltonian procedure outlined in section [£.4] From the theory that we briefly
summarize first, we expect a two-qubit exchange interaction in terms of a spin Hamil-
tonian. Since the theory involves quite a few approximations, we will need to deepen
our understanding of the reliability of such effective Hamiltonians in general. Finally,
we consider a popular scheme for a two-qubit gate by studying the cross-resonance effect
[CCG+11; |[SMC+16].

Since the coupling of both qubits to the resonator is weak (see Tab. , common
two-qubit gates in this setup usually take about ten times as long as the single-qubit
gates [CGM+14; CMS+15; [TCM+16|. Consequently, to make the global error of the
product-formula algorithm negligible (cf. section , we reduce the time step to solve
the TDSE again by a factor of 10, corresponding to 0.01 ps. We have verified that all
experiments we run are independent of this time step and the dimensions of the Hilbert
space, implying that numerical errors do not play a role in the results.

Theory of two-qubit exchange interaction

In the last section, we introduced the raising and lowering operators I;I and b; to describe
the eigenstates of the transmons and to expose their anharmonic oscillator character. Now
we extend this view to the resonator Hamiltonian given by Eq. (5.12b)): By substituting
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Eq. (5.15a)), we obtain

2
~wala+ Yy Giabl +a'h;) (5.23)

where in the last line, the RWA has been made |Gaml13|, and G; = —+/ E;/8E¢; g; is
the resulting coupling constant between the transmon states and the resonator photons.
Hpes resembles a multi-level version of the well-known Jaynes-Cummings model |[JC63|
of atoms interacting with an optical cavity. The next step is to eliminate the resonator
to see which form of effective two-qubit interaction emerges. This step has been done in
NMR setups and cavity QED architectures [SM99; ZG00; RBHO1| and in circuit QED
architectures [BHW+04; MCG-+07; LCPO08; |Chol0; Gam13; SMO-15| using various
techniques such as the Schrieffer-Wolff transformation to go to the dressed frame. The
resulting two-qubit exchange interaction is of the form J (l;ll;; + ZA)‘{I;Q) In the TLA, this
results in J(oy oy +o0f0,) = J(o¥0% + 00y)/2. With the number of photons in the
resonator set to zero, the effective Hamiltonian of the total undriven system Hry. + Hro +
Hges then reads
Hifary = ——5+07 = 3205 + S(o703 + ol (5.24)

where J = G1Ga(w; + wy — 2w, )/2(wy — wy)(wy — w;) is the effective two-qubit cou-
pling strength, and wr; = w; + G?/(w; — w,) is the qubit transition frequency shifted
by its interaction with the resonator (usually called Lamb shift). It is worth mentioning
that sometimes also other types of transverse coupling are assumed such as only Jo{o3
[Warl5|.

Finally, it is helpful to keep an overview of the required approximations to obtain the
simple spin Hamiltonian in Eq. |Gam13|:

a) Approximating the transmon as an anharmonic oscillator for Ej; > FE¢;

(
(b) Expansion to second order in the couplings G;/(w; — w;)

)
(c) RWA: (a+ at)(b; + b)) ~ abl + a'b,

(d) TLA: b; ~ 07 and b} ~ o;F

(e) Assuming the dynamics in the total Hilbert space can be covered by a 4 x 4 matrix

Especially the last assumption corresponding to Eq. is usually made without further
consideration; but as is known from the Kraus representation (see also the discussion
below Eq. ) and as we have seen in the example in section m, this is not necessarily
to be taken for granted.

Measuring the effective Hamiltonian

As the effective Hamiltonian given in Eq. ([5.24)) is the foundation for many gate proposals
[Gam13], it is worth analyzing to which degree it can reproduce the free evolution of the
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system. We do this by applying the procedure described in section 4.4l It will not only
allow us to compute the Lamb shift and the effective qubit coupling, but also to test
whether the optimal effective coupling is actually of the form o¥0% 4+ ofoy. After that,
we further analyze on which time scale such effective Hamiltonians can describe the time
evolution accurately.

The parameters for the procedure in Eq. are set to 7 = 0.1, m = 4000, and
r = 12 such that a free evolution over 400 ns is used to infer the optimal effective Hamil-
tonian. Note that 7 corresponds to 0.1ns and is thus much larger than the time step
used to solve the TDSE. This is done to ensure that intermediate entanglement between
the systems on short time scales is not given too much weight. Under this condition,
the purity of the reduced density matrices is always very close to 1, and the procedure’s
results are robust against variations in the parameters. The resulting coefficients of the
effective Hamiltonian in comparison with those of the Hamiltonian given in Eq.
are shown in Tab. (.4

The first thing to note is that the failure rate v = 2.625 x 107 defined by Eq.
is very low, indicating that the dynamics can indeed be described by an effective Hamil-
tonian. Next, the coefficients of o7 almost exactly match those predicted by the theory,
meaning that the Lamb shifts G?/(w; — w,) € {27 x —0.0035 GHz, 2r x —0.0029 GHz}
have also been found by the procedure. However in the last digits, there is still a dif-
ference of the same order of magnitude as the Bloch-Siegert shift —G?/(w; + w,) which
is a consequence of the counter-rotating terms dropped in the RWA (see also |BS40],
[Rig09], and [RGP+12]). In addition to this, we observe a dominance of o{cj as opposed
to ofos + ofoy with a coupling strength about twice as high. Note that these types of
transverse couplings are usually considered equal under the RWA. Apart from the domi-
nant transverse couplings, there is also a longitudinal contribution of the type ofo3.

To measure the time scale on which these seemingly negligible differences become im-
portant, we evaluate the time-dependent fidelity given by Eq. for four different
effective Hamiltonians: The first case is H%f}fleory given by Eq. (5.24), and the second case
corresponds to the optimal Hamiltonian HEI shown on the left-hand side in Tab. . In
addition to this, we define Hgg as H%f}fleory with only the single-qubit coefficients of o7
taken from the fit (thus measuring effects beyond the Lamb shift). Finally, we measure
the effect of also including the longitudinal coupling, i.e., Hfh,, = HSE + hazoios. The fi-
delities for four different initial states over a total time evolution of 400 ns (corresponding
to common two-qubit gate lengths) are shown in Fig. .

We find that for the computational basis states, there is no observable difference among
the effective Hamiltonians in the description of the time evolution. However, this does
not necessarily mean that this also holds for superpositions of the basis states. For the
states |+4) of the Hadamard basis, for instance, Hf}.,, loses almost 5% in fidelity after
400 ns, which results in the spins pointing up to 30° away from where they are supposed
to be (cf. Fig.|F.2)). By replacing the single-qubit contributions in H%ffleory with those from
the fit (i.e., going from the red to the navy blue curve in Fig. , we can remove most
of this error. Hence, even the minuscule difference beyond the Lamb shift in the last two
digits of the coefficients of o (see Tab. becomes significant. By further including the
longitudinal coupling strength hs3/2m = 0.044 MHz (from the navy blue to the turquoise
curve in Fig. [5.9)), also the remaining difference in the fidelity can be explained. However,

a difference between the transverse couplings is not observable within the first 400 ns.
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Table 5.4.: Effective Hamiltonian obtained from the free evolution (left) in comparison
with the theoretical result given in Eq. @ (right). The numbers are the expansion
coeflicients h;;/2m in GHz defined by Eq. @]} Only the nonzero coefficients are shown.
The single-qubit coefficients are almost equal to those predicted by the theory, but as
we see below, the differences in the last digits becomes important for long evolutions.
Furthermore, the dominant coupling is of the type o7o% and not 603 + o}0}.

eff eff
HF it H

Theory
1y s ay o3 1y s ay o3
1, -2.558469 1, -2.558525
of -0.003395 -0.000077 oy -0.001608
a¥ -0.000066 -0.000051 a¥ -0.001608
o7 -2.673194 0.000044 o7 -2.673244
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Figure 5.9.: Time evolution of the fidelity given in Eq. (5.9) for four different effective
Hamiltonians, namely the theoretical result given by Eq. (5.24) (red), the fit (yellow),
the theory with o7 taken from the fit (navy blue), and the theory with o7 and ofoj
taken from the fit (turquoise). The four plots correspond to different initial states in the
two-qubit subspace. For the computational basis states, the effective evolutions are all
equal, but for the superposition states |——) and |®*) (bottom), we observe differences.
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Motivated by the slow linear growth of the difference in both time evolution operators
|exp(—it HEEL) — exp(—itHfgng)Hg ~ 0.04 MHz - t, we have extended the time evolution to
4000 ns (data not shown). The resulting fidelity of ofc3 is about 1% better on average,
yet there is still no significant difference. The reason for this lies in the rapid oscillations
in the fidelities, which stem from intermediate entanglement between the resonator and
the transmons, where the time evolution in the two-qubit subspace cannot be exactly
reproduced by a unitary evolution (see Eq. (4.43)).

So although the evolution in the reduced two-qubit space can be very well approxi-
mated by a unitary evolution, the complete two-transmon evolution is too complicated
to discriminate between the different types of transverse couplings ot/Yo2’? in the re-
duced two-qubit space. Therefore, for the relevant two-qubit gate types, it can only be
said that there is a dominant transverse two-qubit coupling. And indeed, it may be this
fact that makes the cross-resonance gate the preferred two-qubit gate for these systems
[SMC+16|, namely that the principle of the method works for all effective Hamiltonians
with any combinations of 0%/Y0%’? coupling terms [GAL+12]. Therefore, we now proceed
to investigate the underlying effects of this gate.

The cross-resonance effect

The idea of the cross-resonance (CR) effect is quite simple: By irradiating the first qubit
(control qubit) at the frequency of the second qubit (target qubit), we can generate
an interaction that grows linearly in the irradiation’s amplitude. A weak transverse
coupling between the qubits can thus be enhanced to generate an entangling gate. The
principle can already be demonstrated for a simple two-qubit setting: Assume the system
is described in the lab frame by
Hrgs = —%af — %05 + Jojoy + Qcoswpat o] . (5.25)
This Hamiltonian resembles the effective Hamiltonian for our transmon system (see
Eq. (5-24)) with an additional driving of the first qubit at frequency wro and ampli-
tude €2. Since we are in the lab frame, such a driving can immediately be realized by
choosing the voltage ng (t) in Eq. . We have adjusted the resonator-mediated cou-
pling as a consequence of the results obtained in the last section; note, however, that
the principle works for any transverse coupling [GAL+12|. Since the qubits are usually
defined in a reference frame following the drive frequency (cf. section , we move to
a rotating frame defined by R = exp(—iwpat(cf + 05)/2). In this frame, one can show
[RD10] that for |Q,|J| < |wr1 — wral|, the dominant coupling is ofo3 with a coupling
strength proportional to 2. As this coupling becomes +03 if the control qubit is |0) and
—o3 if the control qubit is |1), this term generates a conditional rotation of the target
qubit about the z-axis, thereby having the potential to entangle both qubits. Together
with the other dominant terms, the system is thus approximately described by |Ricl3]
A Q Q
HEo ~ —%o—f + 507 - K‘;afag : (5.26)
where A1s = w1 — wre is the detuning between both qubits. Note that we have again
made use of the notation H® = RTHR — iR'R representing the Hamiltonian if the
computational basis is defined in the rotating frame.
In experiments on transmon systems, however, an additional unconditional rotation
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of the second qubit about the z-axis needs to be taken into account |[CGC+13|. This
term is of the form ¢f and is sometimes considered a consequence of spurious electro-
magnetic crosstalk [Warl5|. Furthermore, it is reasonable to assume that the presence of
higher energy levels influences the coupling strengths if certain resonance conditions are
met. Indeed, a deeper theoretical analysis starting from Eq. and Eq. yields
|Gam13]|

A 0
HE, = —=701 + 5o + Jik ojoy + Tk of (5.27)
where
QO J Aps
g = = 5.28a
X 2 Ay (A12 + 51) ( )
QO J )
Jh = ! . (5.28b)

2 Aqs (A1 + 61)

Thus the higher energy levels of the transmon enter through the anharmonicity d;, which
can be physically interpreted in two instructive limits: For d; = 0, the transmon becomes
a harmonic oscillator and the entangling properties of the system vanish. For |§;|— oo,
however, the transmon simplifies to a two-level system and we recover Eq. . Observe
also that the coupling strengths exhibit divergences at A, = —d; (and Jg% additionally
at Ao = 0). This means that the higher level transitions of the first transmon become
aligned with the transitions of the second, thus boosting the microwave-induced interac-
tion. This is favorable since in theory, a higher interaction strength allows shorter gate
durations. The effect has been measured in experiments [Warl5|, and it is one of our
motivations to study to which degree the interaction can be enhanced by matching these
resonance conditions. Of course, since the transmon is not a perfect anharmonic oscilla-
tor, these divergences are cut off in the general case.

Despite the theoretical understanding of the CR effect, experiments suffer from difficulties
in pushing the speed and the fidelity of the gate to the coherence limit. In [SMC+16|, the
authors have therefore developed a procedure to measure additional contributions to the
system Hamiltonian that have not been found using the perturbative treatment leading
to Eq. . In the following, we apply the same method of Hamiltonian tomography
to our system to assess which of the additional terms emerge from the pure Hamilto-
nian evolution of the system, and which can be attributed to additional environmental
influences.
The procedure in [SMC+16]| is based on a CR Hamiltonian of the form

R _ geff =z eff _y eff _z eff z _x eff 2 y effl _z =z
Hop = Jix oy + Jiy oy + Jjz05 + Jyx o105 + Jzy 0705 + J;z5 0705 . (5.29)

Projected onto the eigenspace of HE,; where the control qubit is in |[C' = 0), this Hamil-
tonian takes the typical Zeeman form Be - §5/2. The same holds in the other eigenspace
where the control qubit is set to |C' = 1). Hence we have (HEg)c = B¢ - 72/2 where the
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coeflicients of 50:0,1 obey

Bz Bz B — B*

Jix = —OZ - Jf =L 1 L (5.30a)
BY + BY BY — BY

Jiy = —OZ -, J =1 7 L (5.30D)
BZ + B: Bi — B:

Jet — % , g =S (5.30¢)

To find the interaction strengths J*, we thus need to know the coefficients of gczo,l.
They can be obtained from the data generated by the time evolution of the second spin
(03): Using the Ehrenfest theorem in the Heisenberg picture, we have

q ) ) 0 -B; BY
a<52>c = Z<[%BC . 52, 52]>C = BC X <62>C = Bé 0 —Bé <52>C . (531)
~BY BL 0
Ac

Thus the time evolution of the second spin is governed by two separate Bloch equations
(@2(t)c = e (F(0)e (5.32)

dependent on whether the control qubit is in |C' = 0) or |C'=1). By fitting the coeffi-
cients of Bo_o through Eq. (5.32) to the expectation values of the second spin, we can
then use Eqgs. (5.30a)—(5.30d) to infer the parameters J° of HEp.

The CR pulses that we apply to the control qubit are of three different kinds: The
first is a constant irradiation of amplitude €2, as defined in Eq. . The second pulse
additionally uses the first 15 ns for a Gaussian turn-on and the last 15 ns for a Gaussian
turn-off of width ¢ = 5ns (cf. [SMC+16|). In addition to this, the third pulse uses
the DRAG Y-only correction on the other quadrature as done in |[CCG+11] (see also
Eq. (5-214)). Each pulse is applied for a time t, € {50ns, 100 ns, 400 ns}, and we sweep
different amplitudes 2 up to 27 x 160 MHz which is necessarily smaller than the detuning
Ajy (see Tab. [5.3). As done in [SMC+16], we generate two data sets from the initial
states |00) and |10).

One example of the time evolution of the second spin in a frame rotating at its Lamb-
shifted frequency wrs together with the Bloch model fit is shown in Fig. [5.10] The gate
time in this case is ¢, = 400 ns and the CR amplitude is approx. 27 x 130 MHz. The first
thing to note is that the CR effect is clearly visible: If the control qubit is in |0) (first
row), the target qubit rotates towards the negative y-axis (blue curve), and if the control
qubit is in |1), the target rotates in the opposite direction. Hence the conditionality of
the motion of the target qubit can be used for an entangling gate. Note also that the
frequency of rotation is faster in the latter case. Comparing the constant (left) and the
Gaussian-shaped (right) envelope of the CR drive, we further observe that a Gaussian
rise and fall makes the evolution of the second spin a lot smoother. So in the case of a
Gaussian-shaped pulse, the Bloch model given by Eq. fits very well, even though
the CR amplitude is relatively large. The reason for the deviation in the constant pulse
case can be found by examining the immense leakage of the control qubit into the non-
computational state |2) (last row of plots in Fig. [5.10). Interestingly, the leakage is still
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quite high in the Gaussian-shaped case without compromising the CR effect. However,
even though the leakage returns to 0 when the CR pulse is turned off, the difference
between the cases |C'=0) and |C'=1) may cause problems if the gate is applied to
superpositions of both states on the control qubit (note that the mathematical concept
of unitary gates does not necessarily apply to faulty operations on the reduced two-qubit
subspace, see also [DMH+02]|). The DRAG correction does not significantly change this
excitation. This is reasonable since the Gaussian makes up 30 ns of the pulse, which is
too long for this DRAG correction to make a significant difference (see also the results
of section . Furthermore, since the Gaussian turn-on is not symmetric, applying
the derivative of the pulse to the other quadrature induces an additional rotation of the
control qubit about the y-axis during the flattop of the CR pulse, so DRAG cannot be
applied as easily as for the single-qubit gates. A solution would be to reduce the CR
amplitude, although this further decreases the upper bound to the possible speed of the
gate.

Constant €2 Gaussian-shaped €Q(t)

(dq) for |C'=0)

5) for |C'=1)

s

{

Leakage
=]
13

‘H“’W - |

100 150 200 25() 300 350 4000 50 100 150 200 250 300 350 400

Time ¢ |ns] Time ¢ |ns|

Figure 5.10.: Time evolution of the system during the application of a CR pulse for
ty = 400ns and Q0 = 27 x 130 MHz, along with the fit defined by the Bloch model in
Eq. (5.32)). The first row shows the time evolution of the target qubit if the control qubit
is in |C' = 0), and the second row corresponds to |C' = 1). The left plots correspond to
CR pulses with a constant envelope, and the right plots correspond to a Gaussian-shaped
envelope. In the last row, the respective leakage of the control qubit in terms of the
probability to measure it in the non-computational state |2) is shown for both cases.
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As explained above, the Bloch model fits yield the coefficients of the CR Hamiltonian
given by Eq. . To compare the results with the two-level case, the procedure is also
applied to the two-level spin model introduced in section [3.2l The resulting coefficients
of the Hamiltonian as a function of the CR drive amplitude €2 for some representative
configurations are shown in Fig.[5.11] We find that both the transmon and the spin model
exhibit a clear dominance of the ZX term. The crosstalk term IX that is only present
in the full transmon system is of similar magnitude. For smaller CR amplitudes, the
perturbative result given by Eq. and Eq. describes the interaction strength
reasonably well. The deviation from the linear increase for higher amplitudes has two
reasons, namely () reaching the detuning A;, and the gradually increasing leakage shown
in Fig. [5.10] For shorter gates with ¢, = 50 ns (the lower plots in Fig. , the effective
interaction strengths J°T deviate even more from the expectation given in Eq. .
This can be traced back to the effect of the Gaussian turn-on and turn-off, each of which
covering 15 ns of the total CR pulse. The higher ratio of rise/fall time to the actual flattop
also results in a constant ZZ contribution independent of €2. As expected, applying a
DRAG correction does not significantly influence the performance. This might, however,
be different for shorter rise times of the pulse [CDG+10|. Finally, the unexpected IY
contribution measured in [SMC+16| is only marginally observable for shorter gate times.
This suggests that the observed effect is indeed beyond the Hamiltonian evolution of the
system.
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Figure 5.11.: Coefficients of the CR Hamiltonian given by Eq. dependent on the
drive amplitude. The upper plots correspond to the long Gaussian-shaped pulses (¢, =
400 ns) applied to the transmon quantum computer (left) and the simple two-qubit model
(right). The lower plots are the results for shorter pulses (¢, = 50ns), the right of which

includes an additional DRAG correction as defined by Eq. (5.21a)). The theoretical curves
for the transmons are given by Eq. (5.28a) and Eq. (5.28b)), and those for the spin model
are given by Eq. ((5.26)).
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5. Quantum computing systems

As a last experiment, we analyze to which extent the effective interaction rate can
be boosted by matching the resonance conditions mentioned above, i.e., when the de-
tuning Aj, between the transmons approaches the negative anharmonicity —d; of the
control transmon (see Eq. (5.28b)). A stronger interaction rate Jgy is desirable since
this decreases the entangling time 7/4J4% such that the gate becomes faster. Therefore,
we now vary the Josephson energy E;; of the control transmon between 27 x 10 GHz
and 2m x 17 GHz (cf. Tab. . This corresponds to detunings Ao = w; — wo between
—2m x 0.5 GHz and 27 x 0.9 GHz, including the critical points at 46,/ and 0 where most
of the higher transmon levels of both transmons become aligned. For each detuning, we
apply a CR pulse of t; = 400ns and Q = 27 x 26 MHz and use the same procedure as
before to measure H&p, given by Eq. (5.29). The results are shown in Fig. [5.12|
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Figure 5.12.: Coefficients of the CR Hamiltonian given by Eq. dependent on the
qubit-qubit detuning A5 = w; —wy. The strongest contributions are ZX and IX, for which
the perturbative predictions are taken from Eq. (5.28a) (red) and Eq. (black).
Critical behavior can be observed at Ay € {0, |01], —|d2|}, hinting at specific resonance
conditions. The additional label A73® indicates the detuning of the original transmon
frequencies used in all previous simulations (see Tab. . Inset: Time evolution of
the three components of (75); (blue curves) and the three corresponding Bloch model
fits given by Eq. (red curves). Here we see that close to the critical detuning
Ao = |61, there are additional sinusoidal modulations in the time evolution that cannot
be accurately described by the Bloch model.

As predicted by the perturbative result for J¢L in Eq. (5.28a]) and J&% in Eq. (5.28b)),
the interaction strength grows significantly around the critical detuning Ao = |§;]. At
this point, the transition frequencies between |m) and |m + 1) of the control transmon
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5.2. Transmon quantum computer

match those between |m — 1) and |m) of the target transmon, which is the resonance
condition causing the divergence. The reason that the actual divergence is a bit weaker
and is eventually cut off lies in the transmons not being perfect anharmonic oscillators,
so the resonances dissolve for higher m. However, a look at the Bloch model fit shown
in the inset of Fig. reveals that the evolution of the second spin is not accurately
described by HE, anymore. Thus, for transmons produced around this critical detuning,
it may be hard to calibrate the CR gate to high fidelity.

Additional care is also required between transmons whose detuning A5 is too close to
0. Despite the increased ZX contribution that Fig. suggests, one still has to meet
the requirement Q0 < |Ajp|. Again, this reduces the upper bound on the CR amplitude
and thus limits the speed of the gate. Moreover, the driving of the control qubit becomes
resonant, thereby tilting it away from |C' = 0) or |C = 1) (note that this tilting is caused
by the of term from Eq. (5.27)), which has been neglected in Eq. (5.29)). In this case, the
projection of the CR Hamiltonian onto the two eigenspaces of the control qubit becomes
invalid. However, this only means that this method of Hamiltonian tomography leaves its
range of application; a suitable CR gate may still be realized under these circumstances.

The other regions around +6;/2 or 3|01|/2, however, show good agreement with the
Bloch model and can be used to realize CR gates without further investigation.

The study of the CR Hamiltonian in Fig. reveals another interesting physical fea-
ture, namely the occurrence of divergences in the other expansion coefficients of the CR
Hamiltonian. These are obviously higher-order effects w.r.t. the perturbative results in
Eq. . At Ag = 05 = —27 x 0.35 GHz, the IZ and ZZ terms can even surpass the ZX
and IX contributions. Physically, this condition expresses the point where the frequency
of the control transmon matches the transition frequency between the states |1) and |2)
of the target transmon.

So with all the additional effects occurring for transmons as opposed to the simple two-
level spin system, how does one realize a proper CNOT gate? The first step is to precisely
tune the amplitude and the gate time to the specific two sets of qubits. As we have seen,
the CR effect is very sensitive to the frequencies of the transmons, so this must be done
carefully for each of the interacting qubits in the gate calibration procedure. After that,
the goal is to single out the ZX interaction as a primitive of the CNOT (more precisely,
we have CNOT o< exp(ino§os /4) (Z_rj2 @ X_r/2) using the notation from appendix D).
For this purpose, one needs to get rid of the IX contribution shown in Figs. and
5.12l This is usually done using a simple spin-echo technique |[CGC+13|. The addi-
tional contribution along ZZ occurring for smaller gate times and specific detunings are
also addressed by this scheme |[Gam13|, as well as a ZI term resulting from off-resonant
driving of the first qubit. Finally, to handle the IY and ZY contributions that do not
commute with ZX, an additional driving of the target qubit is required [SMC-+16|. It is
an interesting subject of further research to apply all of these techniques to our system,
in order to eventually identify all remaining sources of coherent errors in the realization
of a high-fidelity CNOT gate between two fixed-frequency transmon qubits.
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6. Conclusion

In this project, we have developed an implementation of efficient and unconditionally
stable algorithms to solve the TDSE for various kinds of quantum computer hardware,
accessible through an easy-to-use interface offering different types of visualizations. The
algorithms are specifically tailored to key properties of the Hamiltonians. Thus we are able
to simulate representative superconducting devices on the sub-picosecond scale, which is
far out of reach for present diagonalization techniques. At the same time, the simulation
results can be made arbitrarily precise such that they are only limited by double-precision
floating-point arithmetic (15-16 significant decimal digits) [08]. Of course, since the
Hilbert space grows exponentially in the number of qubits, a simulation at this level is
only feasible for small systems of less than ten qubits, which is also the current state of
the art in experimental implementations [KBF-+15].

The Hamiltonians of our systems were chosen to model a large class of superconducting
CPB qubits and ideal spin qubits. Special emphasis has been put on not making any
approximation to the initial Hamiltonians. We want to stress that the simulated systems
considered in this thesis work, by construction, exactly as quantum theory predicts.
The software developed here is thus ideally suited to locate fundamental limitations
and examine possible solutions in currently popular technologies. Examinations of these
systems can thus be cheaply done without suffering from the fundamental limitations
present in laboratories. For instance, couplings in a qubit system can be turned off at
the push of a button, and different pulse-shaping techniques can be compared, with full
access to the data produced in the entire time evolution. Analyzing this data can then
provide the crucial insights that eventually lead to the right knowledge about how to
achieve high-fidelity quantum gates.

On the other hand, effects observed in the simulation can give further inspiration about
what to focus on in order to derive new analytical statements. Furthermore, it can be
used to study the range of validity of common approximations done in analytical calcula-
tions. In that sense, analytical and computational work complement each other very well.

The particular kinds of superconducting systems that we studied were based on charge
qubits and transmon qubits, controlled by capacitively coupled electric fields and induc-
tively coupled magnetic fields. The coupling among the qubits was mediated by their
capacitive interaction, transmission line resonators, and nonlinear inductances.

For charge qubits, we first examined a form of capacitive coupling that was the original
motivation for the famous CR gate. Under a coherent Hamiltonian evolution, the system
performed almost perfectly, showing the potential to realize high-fidelity universal two-
qubit gates and to be accurately described in terms of an effective two-qubit Hamiltonian.
This last fact is often taken for granted, but as we have seen for a type of strong Josephson-
inductive coupling, this is not necessarily the case. The mathematical reason for that was
found in the effective time evolution in the reduced two-qubit subspace where the coupling
part was traced out. In general, this reduced evolution needs to be described in terms
of Kraus operators and is not necessarily unitary if the system is too complex to be well
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6. Conclusion

described in the reduced Hilbert space [KBD-+83|. Furthermore, even if the description
works reasonably well for the computational basis states (i.e. showing fidelities above a
certain threshold), there may be superposition states pushing the error in fidelity far below
this threshold. Similarly, the concept of unitarity w.r.t. faulty operations is nontrivial: A
gate can perform almost perfectly on the basis states, while still producing big errors on
superposition states.

For transmon qubits, we have investigated various techniques to shape the voltage
pulses used to induce single-qubit rotations. The shapes were selected from constant,
linear, Gaussian, and tangential envelopes. We verified that, due to the reduced an-
harmonicity of the transmon, constant pulses and simple Gaussian pulses for fast gate
operations below 10ns can excite higher energy levels of the transmon, thereby pushing
the qubit out of its computational subspace. Analytic control methods such as DRAG
[GMM+11] can be used to reduce this leakage. However, for the three types of DRAG
corrections that we tested, a reduction of the leakage did not improve the fidelity of the
gate in all cases. Especially for fast single-qubit gates, we found a trade-off between
fidelity and leakage errors that has also been observed in recent experiments [CKQ-+16].
However, by slowing down the gates to about 40ns, all techniques performed equally
well, scoring gate fidelities close to 100%. This is necessary since the gate fidelity is not
a strong measure for the success of a gate: In terms of the spins on the Bloch sphere, we
observed that fidelities about 95% can still mean that the spins are pointing about 30°
away from the ideal result. It is worth mentioning that among all pulses we compared, a
tangential shape always gave the best fidelities.

In addition to single-qubit gates for fixed-frequency transmons, we have made a deep
study of the static coupling mediated by a transmission line resonator. By using a
procedure to extract the optimal effective Hamiltonian describing the time evolution
in the reduced two-qubit subspace, we computed the Lamb shift and the Bloch-Siegert
shift of the qubit frequencies. We used the same procedure to find the optimal form of
the exchange coupling between the qubits. This coupling is often assumed to be purely
transverse of the type ofoj + o}0y, which can be derived under several approximations
such as the RWA and the TLA. In contrast, for the transmon system under consideration,
we found that the optimal description is dominated by ofoj and contributions of the
type oioy and ojcj are smaller by almost two orders of magnitude. However, since the
evolution in the reduced space is not perfectly unitary, these different types of couplings
are hardly distinguishable in terms of fidelity during the first 400 ns.

Under a CR drive, we observed an entangling two-qubit interaction of the type ojo3
growing linearly in the amplitude of the driving field. For transmons, as opposed to a
simple spin system with exchange interaction, the driving also induced an unconditional
rotation of the type o of similar magnitude. The strengths of both terms was found to
saturate at higher amplitudes, thereby setting a limit to the speed of the gate. Although
a Gaussian-shaped CR pulse can be successfully used to extend this limit, we also ob-
served unexpected interactions emerging from the Hamiltonian evolution, especially for
very short gate durations. Finally, we studied the CR Hamiltonian as a function of the
detuning between the two transmons, where we found specific resonance conditions caus-
ing divergences in several interactions. Some of these are beyond first-order perturbative
results, showing interesting new physical effects. However, due to the high sensitivity of
the CR effect to the qubit-qubit detuning, there are two sides of the coin: As the detuning
between two fabricated transmons is hard to determine in advance, they may either be
located at a point where fast CNOT gates in both directions are easily doable, or where
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optimizing such a gate to high fidelity remains a challenge requiring further research.

There are many directions in which the present work can be extended:

Regarding transmon qubits, it would be interesting to test new techniques to speed
up single-qubit gates for weakly anharmonic systems |[CKQ+ 16|, possibly also including
approaches from quantum control theory [PK02|. Similarly, both analytical and numerical
studies can be made to find a deeper characterization of the actual resonator-mediated
coupling between the transmons. Relating to this, as we have only studied single-mode
resonators, it is certainly compelling to analyze the effects of other spurious modes in
the resonator. For the CR gate and other popular schemes |[MG14; MFM+16|, the
final objective would then be to identify and characterize all sources of coherent errors
preventing high-fidelity fast CNOT gates between arbitrary transmons.

Another attractive option would be to extend our simulation algorithms to arbitrary
linear and quadratic terms in the superconducting phase operator. In addition to CPB
qubits, we could then also model promising flux qubit devices such as the fluxonium
IMKG+09] which does not suffer from weak anharmonicity as much as the transmon.
This also includes a fascinating recent design based on longitudinal coupling promising
easy scalability [RD16a], as well as other classes of tunable inductive coupling schemes
IKQC+16].

A typical qubit experiment comprises the three stages of initialization, computation,
and measurement. As we have mainly focused on the computation part and the realization
and evaluation of certain gate schemes, it would be an interesting project to add support
for deeper studies of the other two stages to the program. This would allow a more
accurate modeling of quantum computer hardware, providing the opportunity to optimize
projective measurement or readout techniques or to study quantum feedback control
[RD16b]. Additionally, the performance of small quantum error correction protocols
under more realistic hardware conditions could be investigated.

Finally, a profitable complementary direction would be to adjust the software to em-
ploy the resources of massively parallel supercomputers. By making use of sophisticated
optimization and parallelization techniques as done in [DMD+07], it would become fea-
sible to simulate larger superconducting qubit systems. Such systems are now also seen
within reach of experimental expertise |[GCS15].
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A. The Josephson effects obtained from the simple tunneling Hamiltonian

A. The Josephson effects obtained from the simple
tunneling Hamiltonian

In the following, we demonstrate how the Josephson effects in Eq. and Eq. can
be derived from the simple tunneling Hamiltonian H = —FE; cos¢. There are of course
many other derivations of the same equations (cf. |[Jos62|, [WS65|, [FLS65| or [Mar04]);
we have chosen this version because it is quite straightforward and follows standard con-
cepts of Hamiltonian dynamics.

(DC) The DC Josephson effect makes a statement about the current I that we can
measure across a Josephson junction. In quantum theory, it seems natural to understand
it as the expectation value of some current operator I in an eigenstate of the Hamiltonian
|©). Thereby, the current operator is chosen as I =—2dn /dt, measuring the number of
Cooper pairs traveling across the junction and weighted with a charge of —2e. Thus we
find in the Heisenberg picture

R dn
Ilo) = —2e (o] —
(o[1|e) e (¢ % )

= i (ol 3, H )

= singp

where we can identify the critical current I. = 2eE;/h such that I = I.sing as in

Eq. .

(AC) The AC Josephson effect describes the time dependence of p(t) under an external
voltage bias V. This causes an additional linear term in the Hamiltonian given by the
electrostatic interaction energy of a charge in an external electric field:

H=—FE;cos¢+2eVn

The desired effect can then be obtained from solving the TDSE for an initial state
|W(0)) = |¢o), and it corresponds to the expectation value p(t) = (V(t)|¢|¥(t)). Hence
we start from the TDSE

ih% (1)) = (& (e +e7'?) +2eVn) |U(t))

To get rid of the linear term, we make an ansatz of the form [W(t)) = e~ [(¢))
with w = 2eV//h. Note that, in quantum information terminology, this transformation is
equivalent to moving to a rotating frame by means of the rotation R = e~ such that
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H — RYHR — ihR'R. Using the similarity relation
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where [A, B], == [A, -]*(B) = [A,[A,---[A, B]]], we thus obtain a modified TDSE for

|W(t)) where the linear dependence on # has gone, i.e.
J ~ . - ~
iho () = =5 (70 4 7H0) (1)

Since the only operator occurring on the right-hand side is 3, and the initial state |¥(0)) =
|po) is an eigenstate of it, the solution can easily be calculated from the time evolution
operator (note that the corresponding Hamiltonians for different times commute):

L B (pren pemitpron) ar
0

U(t) = e |00)

. ¢
%EJofcos(goo—i—oJT) T

d
=€ |900>

The integration in the prefactor could be carried out explicitly; but as it is only a phase
that drops out in the expectation values, we just leave it there. Using the translation
relation e~ |ip5) = |p + wt) that can be derived from Eq. (2.14)), we finally obtain

. ¢
%EJ Ofcos(gao—i-oyr) dr

V(1) =e oo + wt)

So the voltage bias made the system evolve as |U(t)) o |¢o+ wt), which yields the
expectation value p(t) = o + wt and thus the AC Josephson effect p = w = 2¢/AV as

in Eq. .

92



B. Dirac’s notation and the domains of number and phase operators

B. Dirac’s notation and the domains of nhumber and
phase operators

Using Dirac’s notation, we have the freedom of representation independence to formulate
physical laws. Thus we distinguish between the abstract ket [¢)) € H and, e.g., its
representations in the phase space 1¥(p) = (p[t)) or in the number space 1, = (n|p).
By inserting completeness relations 1 = > |n)n| = [dp|e)p|, we can easily convert
between different representations, thereby implicitly switching between Hilbert spaces
isomorphic to H. Especially for the evaluation of inner products for matrix elements, we
can choose the representation that allows the easiest calculation.

A problem arises now when we work in infinite-dimensional Hilbert spaces, for which
not all operators we use are immediately well-defined on the entire Hilbert space. In
such a case, we can arrive at different results depending on which representation we use
to perform our calculation. This can produce apparent paradoxes such as the one we
encountered in Eq. ([2.19).

An elaborate treatment of the problem can be found in [Reil4], and for other interesting
kinds of apparent paradoxes we refer to |Gie00|. To explain and avoid the paradox in
Eq. , we need to consider the concept of a domain of an operator as used in functional
analysis. In the following, we thus review the concepts of functional analysis as presented

in [GSO03|.

Definition 1 (Domain). For a linear operator A : D(A) — H, the domain D(A) < H is
a dense linear subspace including only states |¢)) for which the image A |¢) is well-defined
and still belongs to the Hilbert space. This means that D(A) is a subspace of the maximal
domain of definition, i.e.

D(A) < Duax(A) :={|¢) € H : Alep) € H}

In infinite-dimensional Hilbert spaces, also the self-adjointness that we so naturally as-
sume for any physical observable (and the simplicity of working with Dirac’s notation
suggests that) is not necessarily given. There is a sharp difference between self-adjointness
and Hermiticity. Before we get to that, we need to first fix the definition of an operator’s
adjoint.

Definition 2 (Adjoint). The adjoint AT of an operator A is the unique operator satisfying
(Y| AT|p) = (@] Al)" for all |1) € D(A), where |¢) lies in the domain

D(AT) == {|¢) € H : [(|Alv)| < const(¢) [(¥|A[¢)] for all [1)) € D(A)}

For the previous statements to make sense, we have to understand a matrix element
(p|Al1) in bra-ket notation always as the inner product of |¢) and A|)), i.e., A always
acts on the right. This is one of the drawbacks in the notation that can lead to apparent
contradictions. This problem does not arise in the common notation used by mathe-
maticians to define the adjoint, namely (AT¢,¥) = (¢, Ay). Therefore we will allow this
notation in the following.

Definition 3 (Hermitian). An operator A is Hermitian if for all |¢) , |¢) € D(A) :

(Ad,¢) = (¢, AP)
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Definition 4 (Self-adjoint). An operator A is self-adjoint if it is Hermitian and
D(A) = D(AT)

Thus an operator can be Hermitian without being self-adjoint. The important thing to
check here is the domain. In fact, it may happen that D(A") = {0} even if the operator
is well-defined on D(A) # {0}.

The question is now, which domain is the proper domain for the operators that we
work with? Since the operators we have in mind are eventually needed to be self-adjoint
(and thus Hermitian) for the interpretation of observables to make sense, a reasonable
choice is the largest subspace of Dp,ax(A) on which the operators are Hermitian. Hence,
the proper domain for the operator A representing a physical observable is

D(A) = {|) € Dunax(A) : (A, 1) = (6, A) for all [6) € Dyax(A)}

One can easily prove that this space is a dense linear subspace of H, and we have the
following composition rules for sums and products of operators:

D(A+ B) =D(A)ND(B)
D(AB) = {|¢) € D(B) : Bly) € D(A)}

Regarding the operators in question, we now proceed to compute the domains of ¢, n,
and combinations thereof.

The Hilbert space H we use is the space of all states [i)) whose complex-valued wave
function ¢ given by ¢ (p) = (p|tY) is square-integrable on the domain [0,27], i.e. ¥ €
L2([0,27]) = H. This restriction has to be put on H for physical expectation values
defined by inner products to make sense.

Since ¢ is a bounded operator, its domain is the entire Hilbert space . The same

holds for its adjoint $', so we have D(¢) = D(4') = H. The number operator 7, how-

ever, works as a derivative i% on v which imposes additional conditions on . The

obvious one is ¢’ € L*([0,2n]). For the other condition, we examine the Hermiticity of

n:
2

(b, ) — (6, Ap) = / 06 (16! (0)"6(0) — id(0)" ' ()

= i (¢(27)* ¥ (27) — B(0)*1(0))

Hence we also need the wave functions to fulfill periodic boundary conditions, and we
have

D(n) = {|¢) € H : 4,9 € L*([0,2n]) and 1(0) = ¢(2m)}
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B. Dirac’s notation and the domains of number and phase operators

To obtain the proper domains of pn and ny, we need to apply the composition rules:

D(¢n) ={[y) € D(n) : nly) € D(p)}
={l¥) € D(n) : A|Y) € H}
— D(n)

D(np) ={lv) € D(@) : ¢l) € D(R)}
= {[v) € H : o, (pv)" € L*([0,2]) and 09(0) = 2mi)(27) }
= {lv) € H : o, ¢ € L*([0,27]) and 0 = ¥(27)}

Now there is already a big restriction since many wave functions do not vanish at 2.
Note that, interestingly, the periodic boundary condition we needed for n is not required
for the product operator ny anymore. However, due to the composition rule for sums of
operators, it reappears in the commutator [n, $| = ng — pn:

D([n, ¢]) = D(np) N D(¢n)
={lv) € H : ¥,0' € L([0,27]) and ¢(0) = v(27) = 0}

In summary:

D(¢)=D(p") =H

D(h) = {|v) : ¢, ¢" € L*([0,27]) and ¥(0) = ¢ (2m)}
D(¢n) = {|v) : wweﬁmzmamw@zw%nzbw
D(p) = {|¥) : ¢, o' € L*([0,27]) and ¥(27) = 0}
D([n,¢]) = {[v) : ¥, 4" € L*([0,27]) and 4(0) = y(27) = 0}

As described in section [2.1.3] this result explains the apparent paradox.
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C. Matrix norms on finite-dimensional vector spaces

For the sake of completeness, we recite some of the properties of elementary matrix norms
from basic linear algebra [Mey07|. They are mainly used in the description of numerical
algorithms in section [4.1]

For a complex matrix A € C"*", a norm ||A]| is a non-negative real number measuring
the “size” of the matrix. It has to satisfy certain properties such as being positive definite
and homogeneous, and it needs to fulfill the triangle inequality.

It is useful to distinguish between operator norms that are induced by appropriate
vector norms (hence also called induced norms), and entry-wise norms that are defined
by direct arithmetic operations on the matrix coefficients.

Induced norms: The induced norm || Al|, for p € N is defined as

1AZ]],,

zecmqoy (171,

1Al =

where || 7|, = (Z?:1|xi|p)1/ P'is the inducing vector norm. From the definition, we imme-
diately see that the matrix norm and its corresponding vector norm are compatible, in
the sense that

[Azl, < [[A[l, llzl,

The special case of p = 1 produces the maximum absolute column sum of A, and the
definition can be extended to p = oo resulting in the maximum absolute row sum. The
important case for the algorithms in section is p = 2, which is also called the spectral
norm with the corresponding vector norm simply being the Fuclidean norm. It is given
by the largest singular value of A, i.e., the square root of the largest eigenvalue of ATA

1A]l, = v/max{spec(ATA)}

If A is Hermitian (A = AT), this expression simply amounts to the largest absolute eigen-
value of A. So ||A]|, can be used as a tight upper bound on the action of A on a vector.

Entry-wise norms: An entry-wise norm [|A["" can be computed by putting all co-

. . — 2 . . —
efficients of A in one vector @ € C™ and evaluating its vector norm ||dl[,, so we have

RN
Al = (Zw)

ij=1

The important case here is again p = 2, which defines the Frobenius norm ||| = ||-|l5"

that is also known as the Hilbert-Schmidt norm. It satisfies ||A]|, = vV Tr ATA and one
can further show that ||Al|, < [|A||». Thus it is also compatible with the Euclidean vector
norm [[AZ]l, < [|A]lz [|€]],-
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D. Summary of single-qubit rotations

D. Summary of single-qubit rotations

In the following, we present the definition of the matrices and transformations of common
single-qubit rotation gates R"(y) on the Bloch sphere, relevant in the development of the
application described in chapter [ It can also be used as a lookup table to easily verify
quantum circuits. B

The gate R(¢) = ™5 (where S = /2 is the spin vector of Pauli matrices) rotates
an arrow about the unit vector 7 on the Bloch sphere. The angle of rotation is given by
v, and the sense of rotation is clockwise when looking onto the arrow head from above.
This means that, in a right-handed coordinate system, if we use the left thumb to point
along 77, then the curl of the fingers represents the motion. This convention is known as
the left-hand rule. Conversely, the expression e =™ corresponds to the right-hand rule.

Using the algebraic analog to Euler’s formula in the Pauli algebra

—

Rn<§0) — ei«pﬁ-ﬁ — ¢ ¥

(ID o ® — —
=CcoS— +118SIn—n-o
2 2

- =
n-o

we obtain for the three elementary rotations

o
- cos? jsin¥ cos? sin¥ . ez 0
o= (ol omE) e = (55 mE). Rm=< ,Q.

sin 2 P —gin® k4 L
’LSlIl2 COS2 SlIl2 COS2 0 e 2

The most common rotations are those where ¢ = +7/2. Using the notation for the Pauli
eigenstates

Xopy = RY(E) = 1 (1 z) 0) = |O), [+) = et |+),  O) = ill)
w/2 — 5) — /5 . . . LT
/ SRCAUA )= l0), oy e oy, 1O [0)
_ &
Yﬁ_m®:%(11)|mHm, [+) > [0} 0) = €5 0)
11 1) = |+), =) = = 1), ) > 71| 9)
a1 0\ ()=o), R = eT0),  |O) e el |4)
Z7r/2:R (5)264 (0 —i) T s s
H—=ed[l), |-)—=et|O), [O)—et]-)

Using this list, the inverse rotations for ¢ = —m/2 can be found by reading the arrows
“” from right to left.
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E. Effective Hamiltonians for Josephson-inductive
coupling

Auxiliary functions

expandto[expr_, var_List, order_] :=
Module[{t}, Normal@Series[expr /. (#->#t & /@ var), {t, 0, order}] /. t>1]
dropconstants[varpattern ] := DeleteCases[#, term_ /; ! MemberQ[term, varpattern, Infinity]] &

1 1
twolevelapproximation = {Cos[(pi ] > —oxi, Sinf[e; ] » — cyi};
- 2 - 2

pauli = {an_ef - o.ngod[e,Z] , oyn_“‘i > cynMod[e,Z]};

Steps of the derivation in [YTNO3]

eliminatecoupling[U , order ] :=
Module[{current, eliminatee0, Uwithoute0, Ufinal},

current = expandto[8,, U, {@o}, 1];
eliminateg0 = Solve[0 == current, {¢@g}] // First // First;

Uwithout¢O = expandto[U /. eliminate¢0, {ni, n2}, order];
Ufinal = (UwithouteO // TrigExpand) /. twolevelapproximation /. pauli // FullSimplify // Expand //
dropconstants[ox; | oyi ]

Before the variable transformation

2
U= Z (-2 EJon; (Cos[ei] + Cos[@o - ¢; + ¢ex])) - EJy Cos[¢o]
i

-2 EJo m (cos(@o - @1 + gex) + cos(¢1)) -2 EJo 12 (cos(@o - @2 + dex) + cos(¢z)) + EJo (- cos(¢n))

eliminatecoupling[U, 1] /. ¢ex >0
eliminatecoupling[U, 2] /. ¢ex > 7

-2 EJo m oxi -2 EJo n2 0%z

-EJo m n2 ay, oy,

After the variable transformation

2 e;
v (-4 EJo n; Cos[¢; ] Cos[‘p—"- eexd ) - EJo Cos [¢o]
4 2 2

-4 EJo m cos(¢1) cos(djzﬁ— %)—4 EJo n2 cos(¢2) cos(djzﬁ- %)+ EJo (-cos(¢o))

eliminatecoupling[U, 1] /. ¢ex >0
eliminatecoupling[U, 2] /. ¢ex >

-2 EJo m oxi -2 EJo 2 0x2

—EJo m nz2 0x1 0xz
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F. Graphical user interface and visualizations

F. Graphical user interface and visualizations

] Superconducting Qubit Emulator + _0OX
General CPB Quantum Computer CPB Diagnostics

Algorithm Suzuki 2nd Order N xpil-inear Cooper Pair Boxes & Microwave Driving & Resonator & Monitor Probabilities [ Computational Basis
xpil-gaussian . T " T-
function: 7

e (] e EC/Zn /2 f drive ngx1 ( ) wr/2n Skip Callbacks per Gate |5
s o oo 0 (none) ngxz |0 gorzne |0
xpil-gaussian-dragio...

Callbacks per Gate | 1000 p_ € i € 1 |1.20406 13.3491 5.34999 ngyl |(function) gi/2n [0.07 = -
xpil-gaussian-drag2 [ Record Drives and Populations Load Data
xpil-tangantial 2 |1.20406 12.2923 5.12 ngyz |0 g2/2n |0.07

switching Time 0 = - — File Name |default
R — CoprE i dn iy Gate Time Initialization Rho || Heff

Switching Steps 100 e N EcC/zn nCCL nCCR Drive1 Qubit1 Drive2 Qubit2

= 18 |++> : 0.966605 %83
. el —— 3]
& Visualize Spins (& RealTime Ratios Frame: 8883 £ ]
02 0:006 [ .
Rotating (relative) 0.005 1
Seconds per Gate 5 12 e Copy Load Qheff 8
w02 E
0.002
Skip on'Q'and 'E' 1000 Spin Quantum Computer o015
0005
|1 Magnetic Field and Coupling Gate Time Initialization | Rho || Heff 00000
x1 hx hy hz G003
z 114 0 0 0.137789 lpsi> ¢ | |(fidelity) o °§’
Load Save Batch x2 20 0 0
e Ix Iy Iz g
Run CPE QC Run Spin QC x1 120 0 0 New Copy Load Qheff e 50 100 150 200 250 300 330 400

Figure F.1.: Screenshot of the graphical user interface.

On the left side of the interface shown in Fig. [F.I] general settings such as the algo-
rithm and the time step to solve the TDSE can be chosen (cf. section . Setups
can be loaded, saved and run by clicking the corresponding buttons, and a progress bar
shows the progress of the current simulation. In the middle, programs for the CPB
model (top) and the spin model (bottom) as defined in chapter 3| can be configured.
Each gate in both lists is defined by its parameters in the Hamiltonian shown in the
corresponding grids, and the value “(function)” indicates an explicit time dependence
on the corresponding parameter. Drop-down menus to select the computational basis
and a rotating frame are beneath the CPB gates. Next to the initial states, real-time
evaluations of the gate fidelity given by Eq. and the effective Hamiltonian fidelity
given by Eq. are shown. The procedure from section can be triggered with
the “Qheftf” button. On the right, specific diagnostics such as state populations and ap-
plied voltages can be monitored. The program also supports running complete sets of
experiments by using the “Batch” button, which was done to generate the data shown in
Fig. [5.5]./../software /sqe/drives /plots/fidelity-40ns-1.

The settings above the progress bar can be used to trigger the animations on the Bloch
sphere shown in Fig. [F.2] Each scene is rendered in a three-dimensional space. The user
can move the camera through the scene using the mouse and the keyboard. A light on
top of the camera illuminates the scene. Additional information such as the gate name,
the fidelity, and the spin coordinates are printed in green, and a coordinate system is
rendered on the bottom left of the screen.



SQE - Spin Visualization

xpil-gaussian-drag2 (723/1000)
time=228.920000
£fid=0.946813

Figure F.2.: Visualization of the spins on the Bloch sphere during the operation X! |00)
with a Gaussian pulse and DRAG corrections to second order (see section [5.2.1). Below
the arrows representing the spins, the expectation values (o} /vl “) of the Pauli operators
are printed. The axes correspond to the coordinate system rendered on the bottom
left. Above the arrows, diagnostic information such as the gate title, the time of the
animation, and the fidelity is shown. At the time depicted in this screenshot, we see that
the fidelity of the final state |10) is already close to 95%, even though the left spin still
has (of) = —0.5 # 0. The gate and the time displayed on the screen can be selected from

the keyboard, and camera and light sources are controllable using the mouse.
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