000819303 001__ 819303
000819303 005__ 20220930130106.0
000819303 0247_ $$2doi$$a10.1038/ncomms12398
000819303 0247_ $$2Handle$$a2128/13097
000819303 0247_ $$2WOS$$aWOS:000381772600001
000819303 0247_ $$2altmetric$$aaltmetric:10780211
000819303 0247_ $$2pmid$$apmid:27539213
000819303 037__ $$aFZJ-2016-05004
000819303 041__ $$aEnglish
000819303 082__ $$a500
000819303 1001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b0
000819303 245__ $$aQuantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes
000819303 260__ $$aLondon$$bNature Publishing Group$$c2016
000819303 3367_ $$2DRIVER$$aarticle
000819303 3367_ $$2DataCite$$aOutput Types/Journal article
000819303 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480599999_11677
000819303 3367_ $$2BibTeX$$aARTICLE
000819303 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819303 3367_ $$00$$2EndNote$$aJournal Article
000819303 520__ $$aThe continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2–3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.
000819303 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000819303 588__ $$aDataset connected to CrossRef
000819303 7001_ $$0P:(DE-Juel1)159492$$aSchmitz, Christoph$$b1
000819303 7001_ $$0P:(DE-HGF)0$$aMarchewka, Astrid$$b2
000819303 7001_ $$0P:(DE-Juel1)166474$$aValenta, Richard$$b3
000819303 7001_ $$0P:(DE-Juel1)164109$$aHackl, Johanna$$b4
000819303 7001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b5
000819303 7001_ $$0P:(DE-HGF)0$$aRogers, Steven P.$$b6
000819303 7001_ $$0P:(DE-Juel1)164112$$aKhan, M. Imtiaz$$b7
000819303 7001_ $$0P:(DE-Juel1)164137$$aNemsak, Slavomir$$b8
000819303 7001_ $$0P:(DE-HGF)0$$aShim, Moonsub$$b9
000819303 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b10
000819303 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus Michael$$b11
000819303 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b12
000819303 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b13
000819303 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b14$$eCorresponding author
000819303 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms12398$$gVol. 7, p. 12398 -$$p12398 -$$tNature Communications$$v7$$x2041-1723$$y2016
000819303 8564_ $$uhttps://juser.fz-juelich.de/record/819303/files/ncomms12398.pdf$$yOpenAccess
000819303 8564_ $$uhttps://juser.fz-juelich.de/record/819303/files/ncomms12398.gif?subformat=icon$$xicon$$yOpenAccess
000819303 8564_ $$uhttps://juser.fz-juelich.de/record/819303/files/ncomms12398.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819303 8564_ $$uhttps://juser.fz-juelich.de/record/819303/files/ncomms12398.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819303 8564_ $$uhttps://juser.fz-juelich.de/record/819303/files/ncomms12398.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819303 8564_ $$uhttps://juser.fz-juelich.de/record/819303/files/ncomms12398.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819303 8767_ $$92016-07-04$$d2016-07-11$$eAPC$$jZahlung erfolgt$$pNCOMMS-16-1676A
000819303 909CO $$ooai:juser.fz-juelich.de:819303$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b0$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159492$$aForschungszentrum Jülich$$b1$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166474$$aForschungszentrum Jülich$$b3$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164109$$aForschungszentrum Jülich$$b4$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157925$$aForschungszentrum Jülich$$b5$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164112$$aForschungszentrum Jülich$$b7$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b8$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b10$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b11$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b12$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b13$$kFZJ
000819303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b14$$kFZJ
000819303 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000819303 9141_ $$y2016
000819303 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000819303 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000819303 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000819303 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000819303 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000819303 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000819303 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000819303 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000819303 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000819303 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000819303 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000819303 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819303 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000819303 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819303 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000819303 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819303 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000819303 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000819303 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000819303 9801_ $$aFullTexts
000819303 980__ $$ajournal
000819303 980__ $$aVDB
000819303 980__ $$aUNRESTRICTED
000819303 980__ $$aI:(DE-Juel1)PGI-7-20110106
000819303 980__ $$aAPC