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The central nervous system consists of an unfathomable number of functional networks 

enabling highly sophisticated information processing. Guided neuronal growth with a 

well-de�ned connectivity and accompanying polarity is essential for the formation of 

these networks. To investigate how two-dimensional protein patterns in�uence neuronal 

outgrowth with respect to connectivity and functional polarity between adjacent popula-

tions of neurons, a microstructured model system was established. Exclusive cell growth 

on patterned substrates was achieved by transferring a mixture of poly-L-lysine and 

laminin to a cell-repellent glass surface by microcontact printing. Triangular structures 

with different opening angle, height, and width were chosen as a pattern to achieve 

network formation with de�ned behavior at the junction of adjacent structures. These 

patterns were populated with dissociated primary cortical embryonic rat neurons and 

investigated with respect to their impact on neuronal outgrowth by immuno�uorescence 

analysis, as well as their functional connectivity by calcium imaging. Here, we present 

a highly reproducible technique to devise neuronal networks in vitro with a prede�ned 

connectivity induced by the design of the gateway. Daisy-chained neuronal networks 

with prede�ned connectivity and functional polarity were produced using the presented 

micropatterning method. Controlling the direction of signal propagation among popula-

tions of neurons provides insights to network communication and offers the chance to 

investigate more about learning processes in networks by external manipulation of cells 

and signal cascades.

Keywords: axon guidance, neural network, calcium imaging, microcontact printing

INTRODUCTION

Large populations of neurons have the ability to carry out multiple complex processes in parallel 
facilitated by the highly ordered architecture of the network. Setting up these intricate networks 
necessitates the control of precise wiring of neuronal circuits. Nowadays, the concept of neural 
microcircuits is widely accepted based on experimental and computational studies (Bastos et al., 
2012; Kwan and Dan, 2012). �ese circuits form more complex networks termed macrocircuits that 
connect various brain regions. Understanding the connections between regions (macroconnectome) 
and of microcircuits within regions (microconnectome) is a key challenge. Monitoring every neu-
ron’s input and output is crucial for understanding its function in these circuits but is technically 
impossible and does not allow to unravel the structure–function relationship (Feldt et al., 2012).
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Establishing these intricate networks in vitro requires control 
of precise wiring of neuronal circuits. �is implies guidance on 
a single-cell level and on the scale of small populations of neu-
rons. As neuronal development can be in�uenced by numerous 
cues manipulating the outgrowth of individual cells, such as 
extracellular signaling proteins (Richards et  al., 1997; Arimura 
and Kaibuchi, 2007) or intrinsic factors like centrosome posi-
tion (de Anda et  al., 2005). But also the prior orientation of 
the cytoskeleton impacts the direction of axonal outgrowth by 
tensions generated by micro�laments inside the axon (Baas and 
Ahmad, 2001; O’Toole et al., 2008, 2015; Suter and Miller, 2011; 
Roth et al., 2012).

A multiplicity of approaches has been used to modify cell 
growth and to control polarity of neuronal networks in vitro. An 
ideal approach would o�er full control of neuronal outgrowth 
on both the single-cell level and on the network scale. �e 
system would provide full accessibility for electrical, chemical, 
and optical stimulation and recordings. Furthermore, it would 
be suitable for low- and high-cell density culture with arbitrary 
network geometries. All developed approaches comply with 
at least some or most of these criteria, but fall short of ful�ll-
ing them all. �e best way to establish high-density culture 
with axon separation and controllable connectivity between 
neighboring populations of neurons can be achieved with 
micro�uidic devices (Peyrin et  al., 2011; Millet and Gillette, 
2012; Park et  al., 2014; Verhulsel et  al., 2014). �e downside 
of these systems is their enclosed geometry, which forestalls 
intracellular recordings from any cell on the substrate and limits 
electrophysiological measurements to approaches like those of 
Jokinen et al. (2013). In-mold patterning methods, Feinerman 
et  al. (2005, 2008) and Biancardo et  al. (2008) overcome the 
limitation of accessibility for electrophysiological manipulation 
and maintain the topological in�uence. Propagation of neuronal 
activity with a prede�ned direction was shown on large high-
density populations of neurons (Feinerman et al., 2005, 2008) 
on these substrates, while the control of individual cells and 
their behavior during development is limited. To adapt network 
geometry and single-cell position to external measurement 
devices (Faid et al., 2005; Charrier et al., 2010), more suitable 
approaches have been developed, including laser micropattern-
ing (Scott et al., 2012), photolithographic patterning (Li and Ho, 
2008; Wheeler and Brewer, 2010), and microcontact printing 
(Bernard et al., 1998; Roth et al., 2012). A high spatial resolution 
can be achieved with microcontact printing with a trustworthy 
reproducibility in a broad range of dimensions. Submicrometer 
structures can be printed to in�uence neurite outgrowth 
(Schwaab et al., 2013), as well as small networks with control of 
single-cell outgrowth (Mourzina et  al., 2006a,b; O�enhäusser 
et al., 2007; Charrier et al., 2010; Fricke et al., 2011; Roth et al., 
2012; Yamamoto et al., 2012), and generate patterns spanning 
square centimeters of substrate area. Microcontact printing is 
even suitable for the formation of structures with dimensions of 
several hundred micrometers with a distinct network geometry 
(Albers et al., 2015). To the best of our knowledge, it has not yet 
been reported that directionality of signal propagation between 
adjacent neuronal populations can be controlled by the method 
of microcontact printing.

In the present study, we used a previously published method 
(Albers et  al., 2015) to create daisy-chained populations of 
neurons with a triangular geometry. �is allows controlled out-
growth of axons toward a prede�ned gateway between adjacent 
structures, where the base of the upper structure and the tip of the 
lower structure meets. Triangular-shaped networks of embryonic 
cortical rat neurons were produced by using microcontact print-
ing to transfer patterns of substrate-bound proteins consisting of 
a mixture of poly-l-lysine and laminin. We presume that when 
encountered, the borders of protein structures lead to turning 
events in neurite outgrowth, as has been shown by Turney and 
Bridgman (2005) and thus, directional neuronal outgrowth can 
be induced. In this survey, we focus on the impact of neuronal 
outgrowth induced by the protein pattern geometry, the connec-
tivity between adjacent populations of neurons, and the resulting 
direction of signal propagation among populations. �erefore, 
embryonic cortical rat neurons were cultured on patterned glass 
substrates up to 24 days in vitro (DIV). Subsequently, spontane-
ous neuronal activity was recorded optically and analyzed with 
a MATLAB script. �us, we have a powerful tool to investigate 
network communication and information processing within and 
among networks of neurons in vitro. �e beauty of this method 
is the full accessibility of single neurons for electrical and optical 
stimulation and recording during measurements with cellular 
resolution.

MATERIALS AND METHODS

Stamp Production
A dark-�eld chrome mask with the triangular structures was 
written by an electron beam writer. A 5- to 12-μm thick layer 
of photoresist (AZ 4562, Clarion GmbH, Germany) was spin 
coated on a dehydrated 0.6 mm thick silicon wafer (5″ diameter, 
MEMC Electronic Materials, USA) to fabricate a mold for stamp 
production. �e resist was dried for 60 s at 130°C. Subsequently, 
the structures were transferred using UV-photolithography, 
and the wafer was baked for 90 s at 140°C. MF-24-A (Karl Süss 
GmbH, Germany) was used for 50  s to develop the resist, and 
the reaction was stopped by washing with Milli-Q water. To 
transfer the structures 4.5 μm deep into the wafer, deep reactive 
ion etching with SF6 at 150 W for 10 min was used. A layer of 
(Trideca�uoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (FOTCS) 
(Sigma, Germany) was linked covalently to the surface of the 
mold as a release layer by a vapor deposition process (45 mbar for 
1.5 h) in argon atmosphere. Microstamps consisting of polyole�n 
plastomer (POP) were fabricated by hot embossing, as described 
previously (Mrksich et al., 1997; Chang et al., 2001).

Structure Design
Daisy-chained lines of triangular structures of the same design 
were horizontally separated by 200  μm resulting in an array 
of 1  cm  ×  1  cm covered with structures. In this study, four 
di�erent designs were used. Two sector of a circle (SC) with a 
height of 650 μm and an opening angle of 60° and 45°, “SC1” 
and “SC2,” respectively, and two di�ering triangles with curved 
sides (CT1 and CT2) were used (see Figure  1). �e curved 



FIGURE 1 | Sketch of the different designs of the tested structures. 

(A,B) A sector of a circle (SC) with different opening angles. (C,D) Curved 

triangular (CT) structures of different heights. (E) Section of the daisy-chained 

arrangement of a CT structure including the nomenclature used in the text for 

descriptions of the gateway. Reproduced with permission from Albers et al. 

(2015).
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triangular (CT) structures were designed by subtracting two 
circles touching the base and the top of the triangle. CT1 used 
circles of a radius r = 900 μm and triangles of w = 550 μm and 
h = 650 μm, whereas CT2 used circles of a radius r = 700 μm 
and triangles of w = 430 μm and h = 500 μm. All structures 
were arranged in a way that the tip touches the base of the 
adjacent structure and forms a de�ned gateway between the 
structures (Albers et al., 2015).

Sample Preparation
Microcontact printing (μCP) was used to transfer the protein 
structures onto a cell-repellent glass surface. �is repellent behav-
ior was achieved by silanizing with FOTCS at 45 mbar for 1.5 h 
in an argon atmosphere. Prior to stamping, the glass coverslips 
were sterilized with UV for 15 min, and the POP stamps were 
cleaned and sterilized in 70% ethanol in an ultrasonic bath for 
15 min. To incubate the stamps in an inking solution [10 μg/mL 
FITC labeled poly-l-lysine (PLL) and 5 μg/mL laminin diluted in 
Gey’s Balanced Salt Solution (Sigma, Germany)], they were dried 
in a nitrogen stream and immersed in the solution structures face 
down. A�er 20 min of incubation, the stamps were entirely dried 
in a nitrogen stream and gently pressed onto the silanized glass 
coverslip for 2 min. �e substrates were stored at 4°C in the dark 
prior to cell culture.

Cell Culture
�e preparation and culture conditions were previously described 
(Fricke et  al., 2011). Brie�y, primary cortical rat neurons from 
embryos of either sex were obtained from E18 Wistar rats and 
diluted in Neurobasal medium (Life Technologies GmbH, 
Germany) with 1% B-27 supplement (Life Technologies), 0.5 mM 
l-glutamine per hemisphere, and 50 μg/mL gentamicin. A cell 

concentration of 16,000 cells/cm2 was used for all cultures. �e 
�rst media change a�er plating was performed a�er 3 h, and the 
entire medium was replaced. At subsequent media changes for 
every 3–4 days, half of the medium was exchanged. Cells were 
kept at 37°C, 5% CO2 and 100% humidity in the incubator.

Immuno�uorescence Analysis
Substrates for immuno�uorescence analysis were cultured on 
18 mm glass coverslips in a 12-well dish with the same cell con-
centration as for functional analysis. A�er 14 days, in vitro cells 
were rinsed thrice with preheated 1× phosphate bu�ered silane 
solution (PBS) prior to �xation with 4% paraformaldehyde in 
1× PBS for 10 min at room temperature (RT). Substrates were 
rinsed thrice with 1× PBS subsequently and permeabilized 
with 0.3% Triton X-100 (Sigma) in blocking bu�er (2% bovine 
serum albumin and 2% heat-inactivated goat serum in 1× PBS) 
for 10 min at RT. Another three rinsing steps were performed 
before samples were blocked with blocking bu�er at 4°C in the 
dark overnight. Samples were incubated with primary antibod-
ies against microtubule-associated protein 2 (MAP2) (2  μg/
mL, Milipore) and anti-200  kDa neuro�lament heavy (NFH) 
(2 μg/mL, abcam) both diluted (1:500 and 1:2000) in blocking 
bu�er for 2.5  h at RT in a wet and dark chamber. Substrates 
were washed thrice with 1× PBS and incubated with secondary 
antibodies (Alexa Fluor 633 and Alexa Fluor 546, Invitrogen) 
diluted in blocking bu�er (1:500) for 1.5  h in a wet and dark 
chamber at RT. A�er �nally rinsing once with PBS and twice 
with Milli-Q water, substrates were embedded in �uorescent 
mounting media (Dako) and dried over night before imaging. 
Images were acquired with a Zeiss Observer.Z1 equipped with a 
Zeiss Colibri system and a PCO.edge 5.5 sCMOS camera using 
the Zeiss ZEN so�ware. �e resulting images were manually 
analyzed with respect to axonal and dendritic growth at the 
gateway between adjacent structures.

Calcium Imaging
A�er 14–24 days, in vitro spontaneous neuronal activity was 
optically recorded by calcium imaging. For the experiments, 
cells were rinsed three times with preheated extracellular 
patch solution (E-patch) and incubated with 4 μM Fluo-4 AM 
(Invitrogen) diluted in E-patch for 45 min in the dark at RT. 
�e E-patch contains CaCl2 (2  mM), HEPES (10  mM), KCl 
(3 mM), MgCl2 (1 mM), and NaCl (120 mM), and the pH value 
of the solution was adjusted with 1M NaOH to 7.3. In case, 
the osmolarity of the culture medium exceeded the osmolar-
ity of E-patch by more than 10  mOsmol/kg, the osmolarity 
of E-patch was adjusted to match the value of the medium 
directly before the experiment with d-(+)-Glucose (Sigma). 
A�er incubation with Fluo-4 AM, the substrate was rinsed 
twice with E-patch, and the �nal volume of 2 mL E-patch was 
added to the 35 mm Petri dish. �e samples were imaged a�er 
an additional rest time of ~10 min in the dark at RT. A Zeiss 
Observer.Z1 equipped with a Zeiss Colibri system and a PCO.
edge 5.5 sCMOS camera was used for sequence acquisition. 
Time sequences with a length of 15–30 s were recorded with 
the Zeiss ZEN blue so�ware at an exposure time of 5 ms and a 
frame rate of 200 frames/s. To achieve this temporal resolution, 



FIGURE 2 | Sketch of the script used to analyze sequences from calcium imaging. (A) An additional binning is applied to obtain a resolution closer to cell 

dimensions. (B) Raw data are extracted from sequences and normalized prior to �lter application. Increases in �uorescence intensity related to action potentials are 

identi�ed by the �rst derivative of the �ltered data and translated in an event traces. (C) A summation of the events over time results in a histogram enabling 

identi�cation of substrate spanning excitation. (D) Color-coded delay plot of the substrate spanning excitation marked in red in the histogram in (C). The insert in the 

lower left corner indicates the �rst event in the substrate spanning excitation. Scale bar: 50 μm.
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a 2 × 2 binning and an image size of 512 × 480 pixels (1.30 μm/
pixel) were chosen. For video analysis, the sequences were con-
verted to AVI �les.

Sequence Analysis
�e video sequences were analyzed with a script written in 
MATLAB. As the size of the 1.3  μm  ×  1.3  μm per pix in the 
recorded sequence is below single-cell dimensions, an additional 
binning of 5  ×  5 pixels was applied (see Figure  2A). �us, a 
resolution was achieved, matching with the dimensions of a cell 
body and which furthermore exhibits the bene�t of reducing the 
calculation time by a reduction of dimensions. Intensity traces for 
each resulting pixel were extracted. Not all pixels within the frame 
correspond to a cell and thus exhibit changes in �uorescence 
intensity. As a consequence, potentially active traces have to be 
identi�ed by their intensity change over time for visualization of 
the results and reduction computational resources. To di�erenti-
ate active and non-active pixels, all sequences were normalized 
with a Gaussian �lter with a window size of 45 frames. A decision 
criterion is de�ned by summing the mean intensity and its SD 
of the entire sequence: A =  |meanframe + stdframe|. In addition, it 
is well known that the mean of a trace is stronger in�uenced by 
variations than the median of the same trace. As a consequence, 

a second decision criterion for individual traces is de�ned: 
B  =  |meantrace−mediantrace|. Here, B should be larger for traces 
with large variations in �uorescence intensity and the following 
is true: Bactive > Bnon-active. Consequently, traces were considered as 
active if A × 0.95 < B. All other traces are de�ned as non-active 
and were used for background analysis. All potentially active 
and non-active traces were smoothed and normalized for time 
correlation analysis. For normalization, the following equation 
is applied: ΔF = (F − F0)/(Fmax − F0), where F is the �uorescence 
intensity of the trace, F0 the minimal intensity, and Fmax the maxi-
mal intensity of the sequence (see Figure 2B). At the same time, 
�uorescence intensity traces are smoothed with a Savitzky and 
Golay (1964) �lter with polynomial order of 3 and a window size 
of 38 frames. To maintain the characteristics of the traces, the 
�lter is applied from both sides (see Figure 2B). A smoothing of 
the traces is required, as the raw data traces exhibit a high �icker-
ing (see Figure 2B). For better comparison among one another, 
the �uorescence traces were translated into binary event traces 
with ones indicating a recognized action potential. �erefore, 
the background noise was approximated applying a histogram 
plot of the �rst derivative of the intensity of the non-active traces. 
By �tting a Gaussian distribution to the histogram, the sigma 
interval (SD) could be extracted. �is sigma interval represents 



FIGURE 3 | Neuronal growth on the boundary of the structures after 14 days in vitro. (A) Phase contrast image of neurite growth on the edge of a protein 

structure. Scale bar: 50 μm. (B) Immunostained neurons for analysis of neurite growth close to the edge of the FITC (green) labeled protein. Axons [neuro�lament 

heavy (NFH) antibody, orange] form a bundle parallel to the boundary, whereas the dendrites (MAP2, magenta) form a rami�ed network. The protein pattern is 

visualized by FITC labeling (green). Scale bar: 50 μm.
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the background noise that was used for thresholding to identify 
peaks in potentially active traces. Events were identi�ed from the 
�rst derivative of the active traces. Peaks higher than three times 
the SD of the background signal and with a minimal separation 
of 400  ms were counted as a single event (SE) associated with 
an action potential. �e adapted activity and sigma thresholding 
for individual sequences enable us to identify intensity changes 
with a sensitivity of 8% intensity change in normalized traces. 
For the identi�cation of substrate spanning excitation (SSE), 
event traces of all potentially active traces were accumulated in a 
histogram over time (see Figure 2C). �us, SSE can be extracted 
from background signals using the region property method 
(MATLAB). �e �rst excitation of each event trace during a SSE 
is used for delay analysis. SSE with a minimal temporal separation 
of 500 ms (�rst excitation to �rst excitation) can be identi�ed. In a 
terminal step, a color-coded delay plot is generated for every SSE 
(see Figure 2D). �e time of the �rst SE of the SSE is noted in the 
insert in the lower le� corner, and a scale bar indicating 50 μm is 
inserted at the lower right corner according to the original pixel 
size. �e resulting delay plots were manually analyzed based on 
their color coding.

RESULTS

For all experiments performed in this study, triangular protein 
structures as depicted in Figures  1A–D were transferred onto 
silanized glass coverslips by μCP, as previously described (Fricke 
et  al., 2011; Wendeln and Ravoo, 2012; Albers et  al., 2015). 
Cortical embryonic rat neurons were cultured on the substrates 
for 10–14 DIV for immuno�uorescence analysis and 14–24 DIV 
for recordings of spontaneous activity by calcium imaging. �e 
observed exclusive cell growth on the patterned structures, 
see Figure S1 in Supplementary Material, is mediated by the 
substrate-bound proteins. Nonetheless, it remained unclear how 
the geometry of protein structures impacts the connectivity 
between adjacent populations of neurons.

Cell Growth
Immuno�uorescence analysis was performed to characterize 
neurite growth induced by the protein structures. �e formation 
of neurite bundles can be observed at the boundaries of the pro-
tein structures, while a rami�ed network of neurites is established 
inside the pattern (see Figure 3A; Figure S2 in Supplementary 
Material). �e close-up in Figure 3B reveals the di�erent compo-
nents of the network. �e dendrites, identi�ed by MAP2 staining, 
form a uniform branched network without speci�c a�nity to par-
ticular regions on the structure. In contrast, the axons, visualized 
by NFH staining, show the tendency to cluster in close proximity 
to the boundary of the protein structure. It is noticeable that the 
axon bundles are found with a distance ranging between 25 and 
35 μm to the protein boundary. �e dendrites, on the other hand, 
approach the boundary without any noticeable restrictions.

�e situation changes when we focus on the gateway between 
adjacent structures. As on the edge of a protein structure, the 
formation of axon bundles can also be observed at the funnel 
where the lower structure transitions to the upper structure, for 
nomenclature see Figure  1E. �e image of a CT1 structure in 
Figure 4A shows the structure of these bundles. In contrast to 
other boundary regions of the structure, a competing in�uence 
of two regions can be found. �e �ne structure of the tip from the 
lower structure acts like a funnel for the axon bundles, whereas the 
base of the upper structure shows similar behavior, as described 
above for the boundaries of protein structures. �e bundles at the 
base follow the structure and overgrow the incoming tip without 
any change as a reaction to the entering axons (see Figure 4B) 
(NFH). �e axons from the lower structure are funneled by the tip 
and sprout as a bundles into the upper structure. Here, the bundle 
roves and the single-axon strands interconnect with surrounding 
cells. Dendrites in the upper structure show a similar behavior at 
the gateway, as described for the axons without forming bundles 
(see Figure 4B) (MAP2). At the base of the upper structure, the 
dendrites follow the edge of the protein layer and approach the 
junction without changing the direction of growth. In contrast to 



FIGURE 5 | Analysis of neuronal cell growth at the gateway between adjacent populations of neurons. Immuno�uorescence stained cultures were 

analyzed between 10 and 14 days in vitro with respect to the orientation of axonal and dendritic growth at the junction. Error bars indicate the SD. The signi�cance 

of the difference between axonal and dendritic growth is calculated. ***p < 0.001, *p < 0.05.

FIGURE 4 | Neuronal cell growth on the gateway between two adjacent structures after 14 days in vitro. (A) Cell growth between two CT1 structures. 

Neurons are stained against MAP2 (magenta) and NFH (orange). Scale bar: 50 μm. (B) Close-up of the gateway. The axons and the dendrites follow the base and 

overgrow the gateway without turning, whereas the axons from the lower structure sprout into the upper structure. Scale bar: 25 μm.
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the axons, a slight penetration of the incoming tip of the lower 
structure can be observed for dendrites directly at the junction. 
Interestingly, this does not necessarily lead to an incursion of the 
dendrite into the funnel.

On the SC structures, a di�erent behavior can be observed. 
�e funneling for the axons induced by the tip design is not as 
strict as observed at the CT structures. �e axons still follow the 
protein boundaries and are guided toward the base of the upper 
structure, but other e�ects can be observed at the gateway. Axons 
growing at the base do not necessarily overgrow the junction and 

show the tendency to turn into the tip of the lower SC structure. 
Furthermore, not all axon bundles in the tip follow the bound-
ary. Some turn and grow back in the opposite direction within 
the printed area. �e statistical analysis of the growth on the 
gateway is shown in Figure 5. �e axonal and dendritic growth 
was analyzed at the junction for each design. �e growth across 
the gateway was categorized into three orientations: lower to 
upper structure (the intended directionality), upper to lower 
structure (unintended directionality), and both directions (lack 
of directionality). Here, the orientation of growth of the dendrite 



TABLE 1 | Orientation of axonal and dendritic growth and the resulting signal propagation at the gateway.

Neurite growth Signal propagation

% Axon n % Dendrite n % Signal STD n

SC1 Lower → upper 56.1 41 53.6 114 24.1 1.8 91

Upper → lower 24.4 24.8 28.6 2.5

Both 19.5 21.6 47.3 2.4

SC2 Lower → upper 47.4 38 57.6 85 28.6 12.4 7

Upper → lower 18.4 17.7 14.3 6.2

Both 34.2 24.7 57.1 14.3

CT1 Lower → upper 93.7 48 54.2 107 85.0 2.9 124

Upper → lower 2.1 33.6 7.1 0.6

Both 4.2 12.2 7.9 0.9

CT2 Lower → upper 86.8 38 38.6 44 79.2 2.3 123

Upper → lower 5.3 40.9 6.8 0.5

Both 7.9 20.5 14.0 0.7
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and the axon is considered irrespective of the soma from which 
they originate.

For both SC structures, the di�erence between axonal and 
dendritic growth within di�erent orientations is surprisingly 
similar. �e funnel formed by the tip guides approximately the 
same number of axons and dendrites crossing the lower toward 
upper structure. At the opposite orientation, the e�ect is similar. 
In contrast to these observations, the behavior at both CT struc-
tures shows di�erent results (see Table  1) (neurite growth). A 
signi�cant di�erence between axonal and dendritic growth can 
be observed at selected orientations. For the orientation from 
lower to upper structure, the percentage of axons growing along 
this direction distinctly exceeds the percentage of dendrites (CT1: 
p < 0.001; CT2: p < 0.05). �e orientation from upper to lower 
shows an inverse behavior for axons and dendrites with the same 
level of signi�cance. However, the di�erence between axonal 
and dendritic growth manifests by more than a factor of 10 in 
this direction. On gateways where both orientations for axons or 
dendrites can be observed, the di�erence is not as high as for the 
unidirectional situations.

As the design of the base of the SC and the CT structures is 
di�erent, we also analyzed di�erently shaped base structures. We 
introduced a �at and a curved base with opposite orientation of 
the curvature to all four designs and characterized the growth 
with immuno�uorescence analysis. �e di�erent designs of the 
base did not signi�cantly a�ect the orientation of growth, neither 
for axons nor for dendrites, data not shown.

Functional Analysis
For functional analysis neurons were cultured for 14–24  days 
in vitro on structures that were shown by immuno�uorescence 
to induce directionality of axons and dendrites. Spontaneous 
activity was then investigated by calcium imaging with Fluo-4 
AM. Acquired sequences were analyzed with the MATLAB 
script described above with the aim of revealing propagation of 
neuronal activity on the pattern with a spatial resolution at the 
single-cell level and a high temporal resolution at the same time. 
�e activity in recorded sequences was summed up resulting in 
histogram plots as shown in Figure 6A. �ese plots allow an easy 

separation of SSEs from background activity. For every SSE, the 
temporal delay between the �rst SE and a speci�c cell is visualized 
by a color-coded delay plot (see Figure 6B). Resulting plots of 
in total 345 sequences from 63 substrates and 13 preparations 
were analyzed manually with respect to the orientation of the 
propagating neuronal activity between adjacent structures. Every 
SSE was categorized according to the predominant orientation of 
the propagating signals. Figure 7 summarizes the analysis of all 
sequences, error bars indicate the SD. Here, both CT structures 
exhibit a signi�cant (p  <  0.001) preferential orientation of the 
propagating signal from the lower to the upper structure. For 
the CT1 design, 85% of the occurring excitations spread in this 
direction, while the CT2 pattern reaches a guidance of propagat-
ing signals of almost 80% (see Table  1) (signal propagation). 
�e amount of excitations spreading in the opposite orientation 
(upper to lower) is signi�cantly lower and only for a few sequences 
signals propagates in both directions across the gateway of the CT 
pattern. �e situation changes completely for the SC structures. 
No signi�cantly predominant orientation of propagating signals 
can be identi�ed for any of these designs. �e percentage of 
signals propagating from the lower to the upper and vice versa is 
almost the same (see Table 1) (signal propagation). At the same 
time, the amount of signals oriented in both directions exceeds 
both distinct orientations.

Our experiments reveal that the observed e�ect is independ-
ent of culture maturation. Two-thirds of the experiments were 
performed between 14 and 16 DIV, and a reliable spontaneous 
activity ensures the observation of spreading neuronal activity. 
�e orientation of the propagating signal at the gateway is almost 
similar for what is shown in Figure 7. Both CT structures show 
a high preferential orientation of propagating singles from the 
lower to the upper structure with more than 85% (see Figure S3 in 
Supplementary Material). At the same time, the undirected orien-
tation of signal propagation for the SC structures manifests at this 
time. A continuing maturation of the network does not change 
the situation as the last-third of the experiments reveal, which 
were performed between 21 and 24  DIV. �e substrate-bound 
protein remains stable up to this time and above as it can be seen 
by the background �uorescence in Figure S4 in Supplementary 



FIGURE 7 | Quanti�cation of the guidance of signal propagation 

among patterned populations of neurons. For statistical analysis, 

color-coded delay plots of gateways between adjacent populations of 

neurons were used. In total, 345 sequences of spontaneous neuronal activity 

were recorded between 14 and 24 days in vitro. Error bars indicate the SD. 

The orientation lower to upper is signi�cantly preferred for CT structures in 

contrast to upper to lower. ***p < 0.001.

FIGURE 6 | Analysis of sequences from calcium imaging of spontaneous neuronal activity after 24 DIV. (A) Histogram of occurring activity on the 

substrate during the recording. Substrate spanning excitations including a high number of active pixels can be clearly identi�ed and grouped. (B) Delay plot of the 

event framed in red in the histogram. Color-coded pixels indicate the analyzed pixels, whereas the dark blue pixel did not show any activity. The differently colored 

pixel shows the delay of their activity related the �rst single event at 3.31 s of the sequence. A black scale bar is inserted at bottom right corner. Length: 50 μm.
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Material. In comparison to the �rst experiments, the amount 
of signals with a preferentially orientation from lower to upper 
slightly decreased for the CT structures but is still signi�cantly 
larger than any of the other two orientations (p  <  0.01). As a 
consequence, the presented results refer to the summarized data 
from all recorded sequences.

Independent from the orientation of signal propagation at the 
gateway, a critical number of cells could be determined that is 
required for synchronized spontaneous activity. By reducing the 

surface area from CT1 to CT2, the total number of cells could 
be reduced without a reduction of the cell density. �is way a 
critical cell density of 150  cells/mm2 was obtained, which cor-
responds to ~10 cells per CT2 structure. A further decrease of 
cell density results in an unsynchronized �ring pattern, which 
strongly impacts the signal propagation and excitation among 
populations of neurons. No impact on signal propagation speed 
could be found for any of the investigated structures. Color-coded 
delay plots were analyzed to estimate the time to excite signaling 
cascades across the pattern. As the dimensions of the investigated 
area are known, also the direct distance between starting and �nal 
point of a signal cascade is known. In our analysis, only excitations 
that disperse across the whole frame and pass a junction were 
included. We calculated a propagation velocity of 13 ± 3 μm/ms 
(velocity  ±  SD) at 24°C RT, irrespective of pattern design and 
orientation of the spreading excitation.

DISCUSSION

In this study, we present a microstructuring method enabling 
exclusive cell growth on structured protein patterns. As a conse-
quence, populations of neurons can be shaped by predetermined 
protein structures with de�ned gateways. �e design of the 
structures highly in�uences the neuronal outgrowth, whereas 
the impact on axonal and dendritic growth di�ers with chosen 
geometric parameters. At the CT structures, the funnel-like 
shaped tip leads to a highly selective growth at the gateway shown 
in Figure 4. All axons within the bundle growing in the funnel 
of the lower structure sprout into the upper pattern, where the 
bundle roves to form connections with the adjacent population. 
On the other side of the gateway, the situation looks di�erent; 
here, the internal tension within the axon results in a bundle 
growth that passes the gateway without noticeable response. 
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Here, the prior orientation to the cytoskeleton impacts the 
orientation of the axonal outgrowth by the tension generated by 
micro�laments inside the axon (Baas and Ahmad, 2001; O’Toole 
et  al., 2008, 2015; Suter and Miller, 2011; Roth et  al., 2012). A 
harsh turn of the bundle into the lower structure would cause a 
reorientation and rearrangement of the internal compartments 
of the axon what is energetically unfavorable. For the dendritic 
growth at the CT structures, guidance e�ect is not as evidenced 
as for axons. Here, the lower sti�ness and higher a�nity for 
branching allow the dendrites to enter the funnel from both 
sides. Even though, a preferential orientation of dendritic growth 
is favored to a growth in both orientations at the gateway at the 
same time. For the pie slice-like SC structures, a clear di�erence 
between the growth of axons and dendrite cannot be recognized 
in either direction. �e apex angle of the lower structure is too 
large such that the funneling e�ect for axons and dendrites was 
equivalent. Considering the internal tension within the axon and 
the resulting predetermined orientation of its growth a turn form 
the upper to the lower structure is more likely to occur than for 
the CT structures. For any orientation of growth on the pattern, 
the amount of axons balances the amount of dendrites growing 
in this distinct orientation for the SC structures.

As a consequence, we conclude that an explicit di�erence 
between the orientation of growth of axons and dendrites has to be 
established to induce a functional polarity at the gateway of adjacent 
structures. Furthermore, it is evident that signal directionality is 
dominated by the ability to control orientation of axonal outgrowth 
more than by the ability to direct dendritic growth. �is separation 
of axonal and dendritic growth can be achieved by a funnel-like 
tip with an apex angle of 6°. If this apex angle would be applied to 
the SC structures, the total cell adhesive area of the SC structures 
would be reduced by a factor of 10. �erefore, the CT design with 
a funnel-like tip with an apex angle below 6° and an increased area 
for the subnetwork caused by the curved �anks o�ers the option 
to grow a highly rami�ed population of neurons that connects to a 
neighboring population with a prede�ned functional directionality. 
Another reason to avoid narrow structures is the internal tension 
in the axon (Roth et al., 2012) that results in a network tension 
by itself. We identi�ed this network tension to be responsible for 
the distinct gab between the boundary of the protein and the axon 
bundle. �e emerging tension pulls the bundles toward the center 
of the population at which the bundles cannot oppose as they do 
not have a balancing tension from the direction.

�e conduction velocity measured in this study is an order of 
magnitude lower than reported values from in vivo studies (Garwicz 
and Andersson, 1992) and cerebellar slices (Vranesic et al., 1994; 
Dellal et al., 2012). While these studies were performed in vivo at 

36°C or at slices at 32–35°C and an atmosphere of 95% O2 and 5% 
CO2, our experimental conditions di�er drastically. Our trials were 
performed at 24°C in in vitro cultures with a low amount of astro-
cytes and glial cells supporting neuronal activity. �e temperature 
di�erence itself causes a nerve conduction velocity decrease by a 
factor of 2–3 following the Arrhenius equation. Additionally, the 
exact trajectory of the dispersing signal is unknown in our network, 
and we cannot report the exact distance the dispersing excitation 
covered. Furthermore, our value includes synaptic delay ranging 
from 1 to 5 ms (Kandel et al., 2000) per synapse of an unknown 
number of synapses involved in the trajectory. �us, we believe that 
our reported value of 13 μm/ms is a reasonable velocity for an exci-
tation dispersing in a neuronal network under these conditions and 
corresponds to reported values in literature (Orlandi et al., 2013).

With this work, we aim at engineering and characterizing 
microstructured neuronal networks in order to generate highly 
predictive in  vitro neuronal circuitries, which can be used to 
investigate network activity by electrical or optical means as 
well as allowing predictive pharmacology, disease modeling, and 
learning processes. Another possible application for the presented 
system could be the investigation of network activity and con-
nectivity in the a�ermath of axonal and dendritic regeneration 
a�er thermal (Rinklin et al., 2015) or mechanical lesion.
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