000819305 001__ 819305
000819305 005__ 20220930130106.0
000819305 0247_ $$2doi$$a10.3389/fpls.2016.00803
000819305 0247_ $$2Handle$$a2128/12473
000819305 0247_ $$2WOS$$aWOS:000377260700003
000819305 0247_ $$2altmetric$$aaltmetric:8501324
000819305 0247_ $$2pmid$$apmid:27375657
000819305 037__ $$aFZJ-2016-05006
000819305 041__ $$aEnglish
000819305 082__ $$a570
000819305 1001_ $$0P:(DE-Juel1)156477$$aVoiniciuc, Cătălin$$b0$$eCorresponding author$$ufzj
000819305 245__ $$aExtensive Natural Variation in Arabidopsis Seed Mucilage Structure
000819305 260__ $$aLausanne$$bFrontiers Media88991$$c2016
000819305 3367_ $$2DRIVER$$aarticle
000819305 3367_ $$2DataCite$$aOutput Types/Journal article
000819305 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1475667934_14267
000819305 3367_ $$2BibTeX$$aARTICLE
000819305 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000819305 3367_ $$00$$2EndNote$$aJournal Article
000819305 520__ $$aHydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR) dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50 to 200% of Col-0 levels) in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although, the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10), which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although, we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads us to hypothesize that some accessions might disrupt a transcriptional regulator of MUCI10. Therefore, this collection of publicly-available variants should provide insight into plant cell wall organization and facilitate the discovery of genes that regulate polysaccharide biosynthesis.
000819305 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000819305 588__ $$aDataset connected to CrossRef
000819305 7001_ $$0P:(DE-Juel1)167406$$aZimmermann, Eva$$b1
000819305 7001_ $$0P:(DE-Juel1)145720$$aGünl, Markus$$b2$$ufzj
000819305 7001_ $$0P:(DE-HGF)0$$aFu, Lanbao$$b3
000819305 7001_ $$0P:(DE-HGF)0$$aNorth, Helen M.$$b4
000819305 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b5$$ufzj
000819305 7001_ $$0P:(DE-Juel1)162358$$aSchmidt, Maximilian$$b6$$ufzj
000819305 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2016.00803$$gVol. 7$$p803$$tFrontiers in Functional Plant Ecology$$v7$$x1664-462X$$y2016
000819305 8564_ $$uhttps://juser.fz-juelich.de/record/819305/files/fpls-07-00803.pdf$$yOpenAccess
000819305 8564_ $$uhttps://juser.fz-juelich.de/record/819305/files/fpls-07-00803.gif?subformat=icon$$xicon$$yOpenAccess
000819305 8564_ $$uhttps://juser.fz-juelich.de/record/819305/files/fpls-07-00803.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000819305 8564_ $$uhttps://juser.fz-juelich.de/record/819305/files/fpls-07-00803.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000819305 8564_ $$uhttps://juser.fz-juelich.de/record/819305/files/fpls-07-00803.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000819305 8564_ $$uhttps://juser.fz-juelich.de/record/819305/files/fpls-07-00803.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000819305 8767_ $$92016-07-25$$d2016-07-25$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1311,-
000819305 909CO $$ooai:juser.fz-juelich.de:819305$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000819305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156477$$aForschungszentrum Jülich$$b0$$kFZJ
000819305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145720$$aForschungszentrum Jülich$$b2$$kFZJ
000819305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b5$$kFZJ
000819305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162358$$aForschungszentrum Jülich$$b6$$kFZJ
000819305 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000819305 9141_ $$y2016
000819305 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000819305 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000819305 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000819305 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000819305 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000819305 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000819305 980__ $$ajournal
000819305 980__ $$aVDB
000819305 980__ $$aUNRESTRICTED
000819305 980__ $$aI:(DE-Juel1)IBG-2-20101118
000819305 9801_ $$aFullTexts
000819305 980__ $$aAPC